Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
4 |
|
5 |
# Load DeepSeek-R1 model and tokenizer
|
6 |
model_name = "deepseek-ai/DeepSeek-R1"
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def recommend_gifts(text):
|
12 |
if not text:
|
13 |
return "Please enter a description."
|
14 |
|
15 |
# Prepare input prompt for the model
|
16 |
-
prompt = f"
|
17 |
|
18 |
-
#
|
19 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
20 |
outputs = model.generate(inputs.input_ids, max_length=200, do_sample=True)
|
21 |
recommendation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
# Gradio
|
26 |
demo = gr.Interface(
|
27 |
fn=recommend_gifts,
|
28 |
inputs="text",
|
29 |
outputs="json",
|
30 |
-
title="AI Gift Recommender",
|
31 |
-
description="Enter details about the person you are buying a gift for, and get personalized suggestions!",
|
32 |
)
|
33 |
|
|
|
34 |
if __name__ == "__main__":
|
35 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
+
import requests
|
5 |
|
6 |
# Load DeepSeek-R1 model and tokenizer
|
7 |
model_name = "deepseek-ai/DeepSeek-R1"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True)
|
10 |
|
11 |
+
# π Web search function to get gift suggestions from various e-commerce sites
|
12 |
+
def search_gifts(query):
|
13 |
+
search_query = query.replace(" ", "+")
|
14 |
+
return {
|
15 |
+
"Amazon": f"https://www.amazon.in/s?k={search_query}",
|
16 |
+
"Flipkart": f"https://www.flipkart.com/search?q={search_query}",
|
17 |
+
"IGP": f"https://www.igp.com/search?q={search_query}",
|
18 |
+
"IndiaMart": f"https://dir.indiamart.com/search.mp?ss={search_query}",
|
19 |
+
}
|
20 |
+
|
21 |
+
# π― Generate gift recommendations using AI
|
22 |
def recommend_gifts(text):
|
23 |
if not text:
|
24 |
return "Please enter a description."
|
25 |
|
26 |
# Prepare input prompt for the model
|
27 |
+
prompt = f"Suggest the best gifts for: '{text}'"
|
28 |
|
29 |
+
# Generate response using the model
|
30 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
31 |
outputs = model.generate(inputs.input_ids, max_length=200, do_sample=True)
|
32 |
recommendation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
|
34 |
+
# Search for gifts on shopping websites
|
35 |
+
product_links = search_gifts(recommendation)
|
36 |
+
|
37 |
+
return {
|
38 |
+
"Predicted Gift": recommendation,
|
39 |
+
"Gift Suggestions": product_links
|
40 |
+
}
|
41 |
|
42 |
+
# π¨ Gradio UI for easy interaction
|
43 |
demo = gr.Interface(
|
44 |
fn=recommend_gifts,
|
45 |
inputs="text",
|
46 |
outputs="json",
|
47 |
+
title="π AI Gift Recommender",
|
48 |
+
description="Enter details about the person you are buying a gift for, and get personalized suggestions with shopping links!",
|
49 |
)
|
50 |
|
51 |
+
# π Launch Gradio App
|
52 |
if __name__ == "__main__":
|
53 |
demo.launch()
|