Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,57 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
import requests
|
5 |
|
6 |
-
# Load DeepSeek
|
7 |
model_name = "deepseek-ai/DeepSeek-R1"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
|
9 |
model = AutoModelForCausalLM.from_pretrained(
|
10 |
-
model_name,
|
|
|
|
|
|
|
11 |
)
|
12 |
|
|
|
|
|
|
|
|
|
13 |
# π― Function to extract interests from user input
|
14 |
def extract_interests(text):
|
15 |
-
prompt = f"Extract 3-5 relevant
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
interests =
|
|
|
|
|
20 |
|
21 |
-
return interests.split(", ") # Return as a list of keywords
|
22 |
|
23 |
# π Web search for gift suggestions
|
24 |
def search_gifts(interests):
|
25 |
query = "+".join(interests)
|
26 |
amazon_url = f"https://www.amazon.in/s?k={query}"
|
|
|
27 |
igp_url = f"https://www.igp.com/search?q={query}"
|
28 |
indiamart_url = f"https://dir.indiamart.com/search.mp?ss={query}"
|
29 |
|
30 |
return {
|
31 |
-
"Amazon":
|
32 |
-
"
|
33 |
-
"
|
|
|
34 |
}
|
35 |
|
|
|
36 |
# π― Main function for gift recommendation
|
37 |
def recommend_gifts(text):
|
38 |
if not text:
|
39 |
return "Please enter a description."
|
40 |
|
41 |
-
interests = extract_interests(text) #
|
42 |
links = search_gifts(interests) # Get shopping links
|
43 |
|
44 |
return {
|
@@ -46,10 +59,11 @@ def recommend_gifts(text):
|
|
46 |
"Gift Suggestions": links
|
47 |
}
|
48 |
|
|
|
49 |
# π¨ Gradio UI for easy interaction
|
50 |
demo = gr.Interface(
|
51 |
-
fn=recommend_gifts,
|
52 |
-
inputs="text",
|
53 |
outputs="json",
|
54 |
title="π AI Gift Recommender",
|
55 |
description="Enter details about the person you are buying a gift for, and get personalized suggestions with shopping links!",
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
import torch
|
4 |
import requests
|
5 |
|
6 |
+
# Load DeepSeek-R1 model
|
7 |
model_name = "deepseek-ai/DeepSeek-R1"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
9 |
+
|
10 |
+
# Ensure the model uses float16 instead of fp8
|
11 |
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_name,
|
13 |
+
torch_dtype=torch.float16, # Forces float16 to prevent fp8 issue
|
14 |
+
device_map="auto",
|
15 |
+
trust_remote_code=True
|
16 |
)
|
17 |
|
18 |
+
# Use a text-generation pipeline for better inference
|
19 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
|
20 |
+
|
21 |
+
|
22 |
# π― Function to extract interests from user input
|
23 |
def extract_interests(text):
|
24 |
+
prompt = f"Extract 3-5 relevant interests from this request: '{text}'. Focus on hobbies and product preferences."
|
25 |
|
26 |
+
# Generate model output
|
27 |
+
response = generator(prompt, max_length=50, num_return_sequences=1)
|
28 |
+
interests = response[0]["generated_text"].replace(prompt, "").strip()
|
29 |
+
|
30 |
+
return interests.split(", ") # Convert to a list of keywords
|
31 |
|
|
|
32 |
|
33 |
# π Web search for gift suggestions
|
34 |
def search_gifts(interests):
|
35 |
query = "+".join(interests)
|
36 |
amazon_url = f"https://www.amazon.in/s?k={query}"
|
37 |
+
flipkart_url = f"https://www.flipkart.com/search?q={query}"
|
38 |
igp_url = f"https://www.igp.com/search?q={query}"
|
39 |
indiamart_url = f"https://dir.indiamart.com/search.mp?ss={query}"
|
40 |
|
41 |
return {
|
42 |
+
"Amazon": amazon_url,
|
43 |
+
"Flipkart": flipkart_url,
|
44 |
+
"IGP": igp_url,
|
45 |
+
"IndiaMart": indiamart_url
|
46 |
}
|
47 |
|
48 |
+
|
49 |
# π― Main function for gift recommendation
|
50 |
def recommend_gifts(text):
|
51 |
if not text:
|
52 |
return "Please enter a description."
|
53 |
|
54 |
+
interests = extract_interests(text) # Extract interests using DeepSeek R1
|
55 |
links = search_gifts(interests) # Get shopping links
|
56 |
|
57 |
return {
|
|
|
59 |
"Gift Suggestions": links
|
60 |
}
|
61 |
|
62 |
+
|
63 |
# π¨ Gradio UI for easy interaction
|
64 |
demo = gr.Interface(
|
65 |
+
fn=recommend_gifts,
|
66 |
+
inputs="text",
|
67 |
outputs="json",
|
68 |
title="π AI Gift Recommender",
|
69 |
description="Enter details about the person you are buying a gift for, and get personalized suggestions with shopping links!",
|