Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
-
import requests
|
5 |
|
6 |
-
# Load DeepSeek
|
7 |
-
model_name = "deepseek-ai/
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
10 |
|
11 |
-
#
|
12 |
-
def extract_interests(text):
|
13 |
-
prompt = f"Extract the main interests from this request: '{text}'. Provide only 3-5 relevant words."
|
14 |
-
|
15 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") # Run on GPU if available
|
16 |
-
outputs = model.generate(**inputs, max_length=100)
|
17 |
-
interests = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
-
|
19 |
-
return interests.split(", ") # Return as a list of keywords
|
20 |
-
|
21 |
-
# π Web search for gift suggestions
|
22 |
-
def search_gifts(interests):
|
23 |
-
query = "+".join(interests)
|
24 |
-
amazon_url = f"https://www.amazon.in/s?k={query}"
|
25 |
-
igp_url = f"https://www.igp.com/search?q={query}"
|
26 |
-
indiamart_url = f"https://dir.indiamart.com/search.mp?ss={query}"
|
27 |
-
|
28 |
-
return {
|
29 |
-
"Amazon": amazon_url,
|
30 |
-
"IGP": igp_url,
|
31 |
-
"IndiaMart": indiamart_url
|
32 |
-
}
|
33 |
-
|
34 |
-
# π― Main function for gift recommendation
|
35 |
def recommend_gifts(text):
|
36 |
if not text:
|
37 |
return "Please enter a description."
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
return {
|
43 |
-
"Predicted Interests": interests,
|
44 |
-
"Gift Suggestions": links
|
45 |
-
}
|
46 |
|
47 |
-
#
|
48 |
demo = gr.Interface(
|
49 |
-
fn=recommend_gifts,
|
50 |
-
inputs="text",
|
51 |
outputs="json",
|
52 |
-
title="
|
53 |
-
description="Enter details about the person you are buying a gift for, and get personalized suggestions
|
54 |
)
|
55 |
|
56 |
-
# π Launch Gradio App
|
57 |
if __name__ == "__main__":
|
58 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
4 |
|
5 |
+
# Load DeepSeek-R1 model and tokenizer
|
6 |
+
model_name = "deepseek-ai/DeepSeek-R1"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
9 |
|
10 |
+
# Function to generate gift recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def recommend_gifts(text):
|
12 |
if not text:
|
13 |
return "Please enter a description."
|
14 |
|
15 |
+
# Prepare input prompt for the model
|
16 |
+
prompt = f"Based on the following description, suggest suitable gifts: '{text}'"
|
17 |
+
|
18 |
+
# Tokenize input and generate response
|
19 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
20 |
+
outputs = model.generate(inputs.input_ids, max_length=200, do_sample=True)
|
21 |
+
recommendation = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
22 |
|
23 |
+
return {"Recommendation": recommendation}
|
|
|
|
|
|
|
24 |
|
25 |
+
# Gradio interface
|
26 |
demo = gr.Interface(
|
27 |
+
fn=recommend_gifts,
|
28 |
+
inputs="text",
|
29 |
outputs="json",
|
30 |
+
title="AI Gift Recommender",
|
31 |
+
description="Enter details about the person you are buying a gift for, and get personalized suggestions!",
|
32 |
)
|
33 |
|
|
|
34 |
if __name__ == "__main__":
|
35 |
demo.launch()
|