Spaces:
Running
Running
from typing import Dict, List | |
import requests | |
from bs4 import BeautifulSoup | |
import aiohttp | |
import asyncio | |
import json | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
import re | |
class DynamicRecommender: | |
def __init__(self): | |
self.headers = { | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' | |
} | |
self.model = SentenceTransformer('all-mpnet-base-v2') | |
async def search_amazon(self, query: str) -> List[Dict]: | |
"""Search Amazon for products""" | |
search_url = f"https://www.amazon.in/s?k={query}" | |
async with aiohttp.ClientSession() as session: | |
async with session.get(search_url, headers=self.headers) as response: | |
if response.status == 200: | |
html = await response.text() | |
return self._parse_amazon_results(html) | |
return [] | |
async def search_flipkart(self, query: str) -> List[Dict]: | |
"""Search Flipkart for products""" | |
search_url = f"https://www.flipkart.com/search?q={query}" | |
async with aiohttp.ClientSession() as session: | |
async with session.get(search_url, headers=self.headers) as response: | |
if response.status == 200: | |
html = await response.text() | |
return self._parse_flipkart_results(html) | |
return [] | |
def _parse_amazon_results(self, html: str) -> List[Dict]: | |
soup = BeautifulSoup(html, 'html.parser') | |
products = [] | |
for item in soup.select('.s-result-item'): | |
try: | |
name = item.select_one('.a-text-normal') | |
price = item.select_one('.a-price-whole') | |
if name and price: | |
products.append({ | |
'name': name.text.strip(), | |
'price': price.text.strip(), | |
'source': 'Amazon', | |
'url': 'https://amazon.in' + item.select_one('a')['href'] | |
}) | |
except Exception: | |
continue | |
return products[:5] | |
def _parse_flipkart_results(self, html: str) -> List[Dict]: | |
soup = BeautifulSoup(html, 'html.parser') | |
products = [] | |
for item in soup.select('._1AtVbE'): | |
try: | |
name = item.select_one('._4rR01T') | |
price = item.select_one('._30jeq3') | |
if name and price: | |
products.append({ | |
'name': name.text.strip(), | |
'price': price.text.strip(), | |
'source': 'Flipkart', | |
'url': 'https://flipkart.com' + item.select_one('a')['href'] | |
}) | |
except Exception: | |
continue | |
return products[:5] | |
def _extract_keywords(self, text: str) -> List[str]: | |
"""Extract relevant search keywords from input""" | |
age_match = re.search(r'age\s+(\d+)', text.lower()) | |
age = age_match.group(1) if age_match else None | |
interests = [] | |
if 'software' in text.lower() or 'engineer' in text.lower(): | |
interests.extend(['programming books', 'tech gadgets']) | |
if 'books' in text.lower(): | |
interests.append('books') | |
if 'successful' in text.lower(): | |
interests.extend(['self help books', 'business books']) | |
return [f"{interest} for {age} year old" if age else interest for interest in interests] | |
async def get_recommendations(self, text: str) -> Dict: | |
"""Get personalized recommendations""" | |
try: | |
keywords = self._extract_keywords(text) | |
all_products = [] | |
for keyword in keywords: | |
amazon_products = await self.search_amazon(keyword) | |
flipkart_products = await self.search_flipkart(keyword) | |
all_products.extend(amazon_products + flipkart_products) | |
# Remove duplicates and sort by relevance | |
seen = set() | |
unique_products = [] | |
for product in all_products: | |
if product['name'] not in seen: | |
seen.add(product['name']) | |
unique_products.append(product) | |
return unique_products[:5] | |
except Exception as e: | |
print(f"Error in recommendations: {str(e)}") | |
return [] |