noddysnots's picture
Update app.py
aeeed0b verified
raw
history blame
1.58 kB
import gradio as gr
import requests
from transformers import pipeline
# Load NLP model (lighter model for efficiency)
zero_shot = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# 🎁 Web search for gift suggestions
def search_gifts(query):
amazon_url = f"[Amazon](https://www.amazon.in/s?k={query.replace(' ', '+')})"
igp_url = f"[IGP](https://www.igp.com/search?q={query.replace(' ', '+')})"
indiamart_url = f"[IndiaMart](https://dir.indiamart.com/search.mp?ss={query.replace(' ', '+')})"
return f"πŸ”— **Amazon**: {amazon_url}\nπŸ”— **IGP**: {igp_url}\nπŸ”— **IndiaMart**: {indiamart_url}"
# 🎯 Main function for gift recommendation
def recommend_gifts(text):
if not text:
return "Please enter a description."
# NLP Processing
categories = ["art", "music", "tech", "travel", "books", "fashion", "fitness", "gaming"]
results = zero_shot(text, categories)
# Get top interest
top_interest = results["labels"][0]
# Get gift links
links = search_gifts(top_interest)
return f"🎯 **Predicted Interest**: `{top_interest}`\n\nπŸ›’ **Gift Suggestions:**\n{links}"
# 🎨 Gradio UI for better display
demo = gr.Interface(
fn=recommend_gifts,
inputs="text",
outputs="markdown", # πŸ”Ή Changes output format to Markdown for better UI
title="🎁 AI Gift Recommender",
description="Enter details about the person you are buying a gift for, and get personalized suggestions with shopping links!",
)
# πŸš€ Launch Gradio App
if __name__ == "__main__":
demo.launch()