Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
# πΉ Load Qwen2.5-14B-Instruct-1M with a pipeline | |
pipe = pipeline("text-generation", model="Qwen/Qwen2.5-14B-Instruct-1M") | |
# π― Function to extract interests from user input | |
def extract_interests(text): | |
prompt = f"Extract 3-5 relevant interests from this request: '{text}'. Focus on hobbies and product preferences." | |
response = pipe(prompt, max_length=50, num_return_sequences=1) | |
interests = response[0]["generated_text"].replace(prompt, "").strip() | |
return interests.split(", ") | |
# π Web search for gift suggestions | |
def search_gifts(interests): | |
query = "+".join(interests) | |
amazon_url = f"https://www.amazon.in/s?k={query}" | |
flipkart_url = f"https://www.flipkart.com/search?q={query}" | |
igp_url = f"https://www.igp.com/search?q={query}" | |
indiamart_url = f"https://dir.indiamart.com/search.mp?ss={query}" | |
return { | |
"Amazon": amazon_url, | |
"Flipkart": flipkart_url, | |
"IGP": igp_url, | |
"IndiaMart": indiamart_url | |
} | |
# π― Main function for gift recommendation | |
def recommend_gifts(text): | |
if not text: | |
return "Please enter a description." | |
interests = extract_interests(text) | |
links = search_gifts(interests) | |
return { | |
"Predicted Interests": interests, | |
"Gift Suggestions": links | |
} | |
# π¨ Gradio UI for easy interaction | |
demo = gr.Interface( | |
fn=recommend_gifts, | |
inputs="text", | |
outputs="json", | |
title="π AI Gift Recommender", | |
description="Enter details about the person you are buying a gift for, and get personalized suggestions with shopping links!", | |
) | |
# π Launch Gradio App | |
if __name__ == "__main__": | |
demo.launch() | |