Spaces:
Running
Running
from typing import Dict, List | |
import aiohttp | |
import asyncio | |
import re | |
from bs4 import BeautifulSoup | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
class DynamicRecommender: | |
def __init__(self): | |
self.headers = { | |
'User-Agent': ( | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) ' | |
'AppleWebKit/537.36 (KHTML, like Gecko) ' | |
'Chrome/100.0.4896.75 Safari/537.36' | |
) | |
} | |
# Load your model if you need it for further logic | |
self.model = SentenceTransformer('all-mpnet-base-v2') | |
# ------------------------------------------------------------------ | |
# Amazon search | |
# ------------------------------------------------------------------ | |
async def search_amazon(self, query: str) -> List[Dict]: | |
""" | |
Search Amazon for products by building the search URL | |
and parsing the resulting HTML. | |
""" | |
print(f"Searching Amazon for: {query}") | |
search_url = f"https://www.amazon.in/s?k={query}" | |
async with aiohttp.ClientSession() as session: | |
async with session.get(search_url, headers=self.headers) as response: | |
if response.status == 200: | |
html = await response.text() | |
return self._parse_amazon_results(html) | |
return [] | |
def _parse_amazon_results(self, html: str) -> List[Dict]: | |
soup = BeautifulSoup(html, 'html.parser') | |
products = [] | |
# These selectors may need updating if Amazon changes their HTML | |
search_items = soup.select('.s-result-item') | |
for item in search_items: | |
try: | |
name_elem = item.select_one('.a-text-normal') | |
price_elem = item.select_one('.a-price-whole') | |
link_elem = item.select_one('a.a-link-normal') | |
if name_elem and price_elem and link_elem: | |
product_name = name_elem.get_text(strip=True) | |
product_price = price_elem.get_text(strip=True) | |
product_url = link_elem.get('href') | |
products.append({ | |
'name': product_name, | |
'price': product_price, | |
'source': 'Amazon', | |
'url': 'https://www.amazon.in' + product_url, | |
'description': 'Leadership/novel recommendation from Amazon' | |
}) | |
except Exception: | |
continue | |
print(f"Found {len(products)} Amazon products.") | |
return products[:5] | |
# ------------------------------------------------------------------ | |
# Flipkart search | |
# ------------------------------------------------------------------ | |
async def search_flipkart(self, query: str) -> List[Dict]: | |
""" | |
Search Flipkart for products. | |
""" | |
print(f"Searching Flipkart for: {query}") | |
search_url = f"https://www.flipkart.com/search?q={query}" | |
async with aiohttp.ClientSession() as session: | |
async with session.get(search_url, headers=self.headers) as response: | |
if response.status == 200: | |
html = await response.text() | |
return self._parse_flipkart_results(html) | |
return [] | |
def _parse_flipkart_results(self, html: str) -> List[Dict]: | |
soup = BeautifulSoup(html, 'html.parser') | |
products = [] | |
# These selectors may need updating if Flipkart changes their HTML | |
item_cards = soup.select('._1AtVbE') | |
for item in item_cards: | |
try: | |
name_elem = item.select_one('._4rR01T') | |
price_elem = item.select_one('._30jeq3') | |
link_elem = item.select_one('a') | |
if name_elem and price_elem and link_elem: | |
product_name = name_elem.get_text(strip=True) | |
product_price = price_elem.get_text(strip=True) | |
product_url = link_elem.get('href') | |
products.append({ | |
'name': product_name, | |
'price': product_price, | |
'source': 'Flipkart', | |
'url': 'https://www.flipkart.com' + product_url, | |
'description': 'Leadership/novel recommendation from Flipkart' | |
}) | |
except Exception: | |
continue | |
print(f"Found {len(products)} Flipkart products.") | |
return products[:5] | |
# ------------------------------------------------------------------ | |
# IGP search (example approach; may need updating) | |
# ------------------------------------------------------------------ | |
async def search_igp(self, query: str) -> List[Dict]: | |
""" | |
Search IGP for products (gift store). | |
Adjust the selectors or approach as needed. | |
""" | |
print(f"Searching IGP for: {query}") | |
search_url = f"https://www.igp.com/search/{query}" | |
async with aiohttp.ClientSession() as session: | |
async with session.get(search_url, headers=self.headers) as response: | |
if response.status == 200: | |
html = await response.text() | |
return self._parse_igp_results(html) | |
return [] | |
def _parse_igp_results(self, html: str) -> List[Dict]: | |
soup = BeautifulSoup(html, 'html.parser') | |
products = [] | |
# You must figure out correct selectors for IGP | |
# This is just an *example*; may not match actual IGP HTML | |
item_cards = soup.select('.product-item') | |
for item in item_cards: | |
try: | |
name_elem = item.select_one('.product-title') | |
price_elem = item.select_one('.product-price') | |
link_elem = item.select_one('a') | |
if name_elem and price_elem and link_elem: | |
product_name = name_elem.get_text(strip=True) | |
product_price = price_elem.get_text(strip=True) | |
product_url = link_elem.get('href') | |
products.append({ | |
'name': product_name, | |
'price': product_price, | |
'source': 'IGP', | |
'url': 'https://www.igp.com' + product_url, | |
'description': 'Gift idea from IGP' | |
}) | |
except Exception: | |
continue | |
print(f"Found {len(products)} IGP products.") | |
return products[:5] | |
# ------------------------------------------------------------------ | |
# Extract keywords / fallback | |
# ------------------------------------------------------------------ | |
def _extract_keywords(self, text: str) -> List[str]: | |
""" | |
Extract relevant search keywords from input text. | |
You can expand these rules or use the entire text as fallback. | |
""" | |
text_lower = text.lower() | |
# Try to find age | |
age_match = re.search(r'age\s+(\d+)', text_lower) | |
age = age_match.group(1) if age_match else None | |
interests = [] | |
# Some sample rules | |
if 'software' in text_lower or 'engineer' in text_lower: | |
interests.extend(['programming books', 'tech gadgets']) | |
if 'books' in text_lower: | |
interests.append('books') | |
if 'novel' in text_lower or 'leader' in text_lower or 'leadership' in text_lower: | |
interests.append('leadership novels') | |
if 'successful' in text_lower: | |
interests.extend(['self help books', 'business books']) | |
# If we found no interests at all, fallback to using the entire text | |
if not interests: | |
interests.append(text) | |
# Optionally add "for 25 year old" context if age is found | |
if age: | |
# You can decide how exactly you want to incorporate age | |
interests = [f"{interest} for {age} year old" for interest in interests] | |
print("Extracted keywords:", interests) | |
return interests | |
# ------------------------------------------------------------------ | |
# Main recommendations | |
# ------------------------------------------------------------------ | |
async def get_recommendations(self, text: str) -> List[Dict]: | |
""" | |
Get personalized recommendations from Amazon, Flipkart, and IGP. | |
""" | |
try: | |
# Step 1: Extract keywords from user input | |
keywords = self._extract_keywords(text) | |
# Step 2: Search across multiple sources | |
all_products = [] | |
for keyword in keywords: | |
amazon_products = await self.search_amazon(keyword) | |
flipkart_products = await self.search_flipkart(keyword) | |
igp_products = await self.search_igp(keyword) # new | |
all_products.extend(amazon_products) | |
all_products.extend(flipkart_products) | |
all_products.extend(igp_products) | |
# Step 3: De-duplicate by product name | |
seen = set() | |
unique_products = [] | |
for product in all_products: | |
if product['name'] not in seen: | |
seen.add(product['name']) | |
unique_products.append(product) | |
# Step 4: Optionally, sort by "relevance" if desired | |
# For now, we just slice the first five | |
final_results = unique_products[:5] | |
print(f"Returning {len(final_results)} products.") | |
return final_results | |
except Exception as e: | |
print(f"Error in recommendations: {str(e)}") | |
return [] | |