Spaces:
Running
Running
File size: 7,035 Bytes
e7b9fde ad1f2d9 1e69485 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde a205c3f e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde ad1f2d9 e7b9fde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
AutoModelForTokenClassification,
TrainingArguments,
Trainer
)
from sentence_transformers import SentenceTransformer
from datasets import Dataset
import torch
import numpy as np
from typing import Dict, List, Optional
import json
class MultiModelAnalyzer:
def __init__(self):
# Initialize different models for different tasks
# 1. Category Understanding Model
self.category_model = AutoModelForSequenceClassification.from_pretrained(
"EMBEDDIA/sloberta-commerce"
)
self.category_tokenizer = AutoTokenizer.from_pretrained(
"EMBEDDIA/sloberta-commerce"
)
# 2. Semantic Understanding Model
self.semantic_model = SentenceTransformer('all-mpnet-base-v2')
# 3. Feature Extraction Model
self.feature_model = AutoModelForTokenClassification.from_pretrained(
"bert-base-multilingual-uncased"
)
self.feature_tokenizer = AutoTokenizer.from_pretrained(
"bert-base-multilingual-uncased"
)
def analyze_text(self, text: str) -> Dict:
"""Combine analysis from all models"""
# Get category prediction
category = self._predict_category(text)
# Get semantic embedding
embedding = self._get_semantic_embedding(text)
# Extract features
features = self._extract_features(text)
return {
"category": category,
"embedding": embedding,
"features": features
}
def _predict_category(self, text: str) -> str:
"""Predict product category"""
inputs = self.category_tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=512
)
outputs = self.category_model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=1)
return predictions.argmax().item()
def _get_semantic_embedding(self, text: str) -> np.ndarray:
"""Get semantic embedding of text"""
return self.semantic_model.encode(text)
def _extract_features(self, text: str) -> List[str]:
"""Extract relevant features from text"""
inputs = self.feature_tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=512
)
outputs = self.feature_model(**inputs)
predictions = outputs.logits.argmax(dim=2)
return self._convert_predictions_to_features(predictions, inputs)
class ModelTrainer:
def __init__(self, model_analyzer: MultiModelAnalyzer):
self.analyzer = model_analyzer
def prepare_training_data(self, product_data: List[Dict]) -> Dataset:
"""Prepare data for fine-tuning"""
training_data = []
for product in product_data:
# Format data for training
item = {
"text": product["description"],
"category": product["category"],
"features": product["features"],
"price": product["price"]
}
training_data.append(item)
return Dataset.from_list(training_data)
def fine_tune_category_model(self, training_data: Dataset):
"""Fine-tune the category prediction model"""
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
)
trainer = Trainer(
model=self.analyzer.category_model,
args=training_args,
train_dataset=training_data,
tokenizer=self.analyzer.category_tokenizer
)
trainer.train()
def fine_tune_feature_model(self, training_data: Dataset):
"""Fine-tune the feature extraction model"""
training_args = TrainingArguments(
output_dir="./results_feature",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs_feature",
logging_steps=10,
)
trainer = Trainer(
model=self.analyzer.feature_model,
args=training_args,
train_dataset=training_data,
tokenizer=self.analyzer.feature_tokenizer
)
trainer.train()
class ProductRecommender:
def __init__(self):
self.model_analyzer = MultiModelAnalyzer()
self.trainer = ModelTrainer(self.model_analyzer)
def train_on_product_data(self, product_data: List[Dict]):
"""Train models on product data"""
# Prepare training data
training_dataset = self.trainer.prepare_training_data(product_data)
# Fine-tune models
self.trainer.fine_tune_category_model(training_dataset)
self.trainer.fine_tune_feature_model(training_dataset)
def get_recommendations(self, query: str, product_database: List[Dict]) -> List[Dict]:
"""Get product recommendations"""
# Analyze query
query_analysis = self.model_analyzer.analyze_text(query)
# Find matching products
matches = []
for product in product_database:
product_analysis = self.model_analyzer.analyze_text(product['description'])
# Calculate similarity score
similarity = self._calculate_similarity(
query_analysis,
product_analysis
)
matches.append({
"product": product,
"similarity": similarity
})
# Sort by similarity
matches.sort(key=lambda x: x['similarity'], reverse=True)
# Return top 5 matches
return [match['product'] for match in matches[:5]]
def _calculate_similarity(self, query_analysis: Dict, product_analysis: Dict) -> float:
"""Calculate similarity between query and product"""
# Combine multiple similarity factors
category_match = query_analysis['category'] == product_analysis['category']
embedding_similarity = np.dot(
query_analysis['embedding'],
product_analysis['embedding']
)
feature_overlap = len(
set(query_analysis['features']) & set(product_analysis['features'])
)
# Weight and combine scores
total_score = (
0.4 * category_match +
0.4 * embedding_similarity +
0.2 * feature_overlap
)
return total_score |