Spaces:
Running
Running
File size: 8,988 Bytes
ad1f2d9 4fddf7b ad1f2d9 4fddf7b 1e69485 ad1f2d9 4fddf7b ad1f2d9 a205c3f ad1f2d9 a205c3f ad1f2d9 a205c3f ad1f2d9 a205c3f ad1f2d9 2f23ac1 ad1f2d9 aeeed0b ad1f2d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
from typing import Dict, List, Optional
import aiohttp
import asyncio
from bs4 import BeautifulSoup
from transformers import pipeline
import pandas as pd
from datetime import datetime
import json
import sqlite3
import re
import urllib.parse
class ProductKnowledgeBase:
def __init__(self, db_path: str = "product_knowledge.db"):
self.db_path = db_path
self.setup_database()
def setup_database(self):
"""Initialize the SQLite database with required tables"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Create products table
cursor.execute("""
CREATE TABLE IF NOT EXISTS products (
id INTEGER PRIMARY KEY,
name TEXT NOT NULL,
category TEXT NOT NULL,
subcategory TEXT,
features TEXT,
target_audience TEXT,
price_range TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
# Create price history table
cursor.execute("""
CREATE TABLE IF NOT EXISTS price_history (
id INTEGER PRIMARY KEY,
product_id INTEGER,
platform TEXT NOT NULL,
price REAL NOT NULL,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (product_id) REFERENCES products (id)
)
""")
# Create recommendations table for feedback
cursor.execute("""
CREATE TABLE IF NOT EXISTS recommendations (
id INTEGER PRIMARY KEY,
user_input TEXT NOT NULL,
product_id INTEGER,
success_rating INTEGER,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (product_id) REFERENCES products (id)
)
""")
conn.commit()
conn.close()
class PriceFetcher:
def __init__(self):
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
async def fetch_price(self, url: str) -> Optional[float]:
"""Fetch price from a given URL"""
try:
async with aiohttp.ClientSession() as session:
async with session.get(url, headers=self.headers) as response:
if response.status == 200:
html = await response.text()
return self._extract_price(html)
return None
except Exception as e:
print(f"Error fetching price: {str(e)}")
return None
def _extract_price(self, html: str) -> Optional[float]:
"""Extract price from HTML content"""
soup = BeautifulSoup(html, 'html.parser')
# Add platform-specific price extraction logic here
return None
class RecommendationEngine:
def __init__(self, knowledge_base: ProductKnowledgeBase, price_fetcher: PriceFetcher):
self.kb = knowledge_base
self.price_fetcher = price_fetcher
self.nlp = pipeline("text-generation", model="gpt2", device_map="auto")
def analyze_user_input(self, text: str) -> Dict:
"""Analyze user input for context and requirements"""
# Extract age if mentioned
age_match = re.search(r'age\s+(?:is\s+)?(\d+)', text.lower())
age = age_match.group(1) if age_match else None
# Extract budget if mentioned
budget_match = re.search(r'(?:budget|cost|price)\s*(?:is|:)?\s*(?:rs|βΉ)?\s*(\d+)', text.lower())
budget = budget_match.group(1) if budget_match else None
# Generate categories and context
prompt = f"Extract gift categories and context from: {text}\nFormat: category1, category2 | context"
response = self.nlp(prompt, max_new_tokens=50)[0]['generated_text']
categories, context = response.split('|')
categories = [c.strip() for c in categories.split(',')]
return {
"age": age,
"budget": budget,
"categories": categories,
"context": context.strip()
}
def find_matching_products(self, analysis: Dict) -> List[Dict]:
"""Find products matching the analysis"""
conn = sqlite3.connect(self.kb.db_path)
cursor = conn.cursor()
query = """
SELECT p.*, GROUP_CONCAT(DISTINCT ph.price) as prices
FROM products p
LEFT JOIN price_history ph ON p.id = ph.product_id
WHERE p.category IN ({})
GROUP BY p.id
""".format(','.join('?' * len(analysis['categories'])))
cursor.execute(query, analysis['categories'])
products = cursor.fetchall()
conn.close()
return [self._format_product(p, analysis) for p in products]
def _format_product(self, product_data: tuple, analysis: Dict) -> Dict:
"""Format product data with explanation"""
return {
"name": product_data[1],
"category": product_data[2],
"features": json.loads(product_data[4]),
"why_recommended": self._generate_explanation(product_data, analysis),
"price_info": self._process_price_info(product_data[-1]),
"target_audience": json.loads(product_data[5])
}
def _generate_explanation(self, product_data: tuple, analysis: Dict) -> str:
"""Generate personalized explanation for recommendation"""
prompt = f"""
Product: {product_data[1]}
Category: {product_data[2]}
User Context: {analysis['context']}
Generate a brief explanation why this product is recommended:
"""
response = self.nlp(prompt, max_new_tokens=100)[0]['generated_text']
return response.split('Generate a brief explanation why this product is recommended:')[-1].strip()
def _process_price_info(self, prices: str) -> Dict:
"""Process and format price information"""
if not prices:
return {"min": None, "max": None, "average": None}
price_list = [float(p) for p in prices.split(',')]
return {
"min": min(price_list),
"max": max(price_list),
"average": sum(price_list) / len(price_list)
}
class GiftRecommenderAPI:
def __init__(self):
self.kb = ProductKnowledgeBase()
self.price_fetcher = PriceFetcher()
self.engine = RecommendationEngine(self.kb, self.price_fetcher)
async def get_recommendations(self, text: str) -> Dict:
"""Main method to get gift recommendations"""
try:
# Analyze user input
analysis = self.engine.analyze_user_input(text)
# Find matching products
recommendations = self.engine.find_matching_products(analysis)
# Fetch current prices
for rec in recommendations:
current_prices = await self._fetch_current_prices(rec['name'])
rec['current_prices'] = current_prices
return {
"analysis": analysis,
"recommendations": recommendations
}
except Exception as e:
return {"error": f"An error occurred: {str(e)}"}
async def _fetch_current_prices(self, product_name: str) -> Dict:
"""Fetch current prices from various platforms"""
encoded_name = urllib.parse.quote(product_name)
urls = {
"amazon": f"https://www.amazon.in/s?k={encoded_name}",
"flipkart": f"https://www.flipkart.com/search?q={encoded_name}",
"igp": f"https://www.igp.com/search?q={encoded_name}"
}
prices = {}
for platform, url in urls.items():
price = await self.price_fetcher.fetch_price(url)
if price:
prices[platform] = price
return prices
# Create Gradio interface
import gradio as gr
def create_gradio_interface():
recommender = GiftRecommenderAPI()
def recommend(text: str) -> Dict:
return asyncio.run(recommender.get_recommendations(text))
demo = gr.Interface(
fn=recommend,
inputs=gr.Textbox(
lines=3,
placeholder="Describe who you're buying a gift for (age, interests, occasion, etc.)"
),
outputs=gr.JSON(),
title="π Smart Gift Recommender",
description="Get personalized gift suggestions with real-time prices and explanations!",
examples=[
["need a fifa latest game of EA"],
["a small kid of age 3 want him to have something like toy that teaches alphabets"],
["Looking for a gift for my mom who enjoys gardening and cooking"]
]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch() |