File size: 8,988 Bytes
ad1f2d9
 
 
 
4fddf7b
ad1f2d9
 
 
 
 
4fddf7b
1e69485
ad1f2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fddf7b
ad1f2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a205c3f
ad1f2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a205c3f
ad1f2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a205c3f
ad1f2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a205c3f
ad1f2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f23ac1
ad1f2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeeed0b
 
ad1f2d9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from typing import Dict, List, Optional
import aiohttp
import asyncio
from bs4 import BeautifulSoup
from transformers import pipeline
import pandas as pd
from datetime import datetime
import json
import sqlite3
import re
import urllib.parse

class ProductKnowledgeBase:
    def __init__(self, db_path: str = "product_knowledge.db"):
        self.db_path = db_path
        self.setup_database()
        
    def setup_database(self):
        """Initialize the SQLite database with required tables"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        # Create products table
        cursor.execute("""
        CREATE TABLE IF NOT EXISTS products (
            id INTEGER PRIMARY KEY,
            name TEXT NOT NULL,
            category TEXT NOT NULL,
            subcategory TEXT,
            features TEXT,
            target_audience TEXT,
            price_range TEXT,
            created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
        )
        """)
        
        # Create price history table
        cursor.execute("""
        CREATE TABLE IF NOT EXISTS price_history (
            id INTEGER PRIMARY KEY,
            product_id INTEGER,
            platform TEXT NOT NULL,
            price REAL NOT NULL,
            timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
            FOREIGN KEY (product_id) REFERENCES products (id)
        )
        """)
        
        # Create recommendations table for feedback
        cursor.execute("""
        CREATE TABLE IF NOT EXISTS recommendations (
            id INTEGER PRIMARY KEY,
            user_input TEXT NOT NULL,
            product_id INTEGER,
            success_rating INTEGER,
            timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
            FOREIGN KEY (product_id) REFERENCES products (id)
        )
        """)
        
        conn.commit()
        conn.close()

class PriceFetcher:
    def __init__(self):
        self.headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
        }
    
    async def fetch_price(self, url: str) -> Optional[float]:
        """Fetch price from a given URL"""
        try:
            async with aiohttp.ClientSession() as session:
                async with session.get(url, headers=self.headers) as response:
                    if response.status == 200:
                        html = await response.text()
                        return self._extract_price(html)
            return None
        except Exception as e:
            print(f"Error fetching price: {str(e)}")
            return None
    
    def _extract_price(self, html: str) -> Optional[float]:
        """Extract price from HTML content"""
        soup = BeautifulSoup(html, 'html.parser')
        # Add platform-specific price extraction logic here
        return None

class RecommendationEngine:
    def __init__(self, knowledge_base: ProductKnowledgeBase, price_fetcher: PriceFetcher):
        self.kb = knowledge_base
        self.price_fetcher = price_fetcher
        self.nlp = pipeline("text-generation", model="gpt2", device_map="auto")
    
    def analyze_user_input(self, text: str) -> Dict:
        """Analyze user input for context and requirements"""
        # Extract age if mentioned
        age_match = re.search(r'age\s+(?:is\s+)?(\d+)', text.lower())
        age = age_match.group(1) if age_match else None
        
        # Extract budget if mentioned
        budget_match = re.search(r'(?:budget|cost|price)\s*(?:is|:)?\s*(?:rs|β‚Ή)?\s*(\d+)', text.lower())
        budget = budget_match.group(1) if budget_match else None
        
        # Generate categories and context
        prompt = f"Extract gift categories and context from: {text}\nFormat: category1, category2 | context"
        response = self.nlp(prompt, max_new_tokens=50)[0]['generated_text']
        
        categories, context = response.split('|')
        categories = [c.strip() for c in categories.split(',')]
        
        return {
            "age": age,
            "budget": budget,
            "categories": categories,
            "context": context.strip()
        }
    
    def find_matching_products(self, analysis: Dict) -> List[Dict]:
        """Find products matching the analysis"""
        conn = sqlite3.connect(self.kb.db_path)
        cursor = conn.cursor()
        
        query = """
        SELECT p.*, GROUP_CONCAT(DISTINCT ph.price) as prices
        FROM products p
        LEFT JOIN price_history ph ON p.id = ph.product_id
        WHERE p.category IN ({})
        GROUP BY p.id
        """.format(','.join('?' * len(analysis['categories'])))
        
        cursor.execute(query, analysis['categories'])
        products = cursor.fetchall()
        
        conn.close()
        
        return [self._format_product(p, analysis) for p in products]
    
    def _format_product(self, product_data: tuple, analysis: Dict) -> Dict:
        """Format product data with explanation"""
        return {
            "name": product_data[1],
            "category": product_data[2],
            "features": json.loads(product_data[4]),
            "why_recommended": self._generate_explanation(product_data, analysis),
            "price_info": self._process_price_info(product_data[-1]),
            "target_audience": json.loads(product_data[5])
        }
    
    def _generate_explanation(self, product_data: tuple, analysis: Dict) -> str:
        """Generate personalized explanation for recommendation"""
        prompt = f"""
        Product: {product_data[1]}
        Category: {product_data[2]}
        User Context: {analysis['context']}
        
        Generate a brief explanation why this product is recommended:
        """
        
        response = self.nlp(prompt, max_new_tokens=100)[0]['generated_text']
        return response.split('Generate a brief explanation why this product is recommended:')[-1].strip()
    
    def _process_price_info(self, prices: str) -> Dict:
        """Process and format price information"""
        if not prices:
            return {"min": None, "max": None, "average": None}
            
        price_list = [float(p) for p in prices.split(',')]
        return {
            "min": min(price_list),
            "max": max(price_list),
            "average": sum(price_list) / len(price_list)
        }

class GiftRecommenderAPI:
    def __init__(self):
        self.kb = ProductKnowledgeBase()
        self.price_fetcher = PriceFetcher()
        self.engine = RecommendationEngine(self.kb, self.price_fetcher)
    
    async def get_recommendations(self, text: str) -> Dict:
        """Main method to get gift recommendations"""
        try:
            # Analyze user input
            analysis = self.engine.analyze_user_input(text)
            
            # Find matching products
            recommendations = self.engine.find_matching_products(analysis)
            
            # Fetch current prices
            for rec in recommendations:
                current_prices = await self._fetch_current_prices(rec['name'])
                rec['current_prices'] = current_prices
            
            return {
                "analysis": analysis,
                "recommendations": recommendations
            }
            
        except Exception as e:
            return {"error": f"An error occurred: {str(e)}"}
    
    async def _fetch_current_prices(self, product_name: str) -> Dict:
        """Fetch current prices from various platforms"""
        encoded_name = urllib.parse.quote(product_name)
        urls = {
            "amazon": f"https://www.amazon.in/s?k={encoded_name}",
            "flipkart": f"https://www.flipkart.com/search?q={encoded_name}",
            "igp": f"https://www.igp.com/search?q={encoded_name}"
        }
        
        prices = {}
        for platform, url in urls.items():
            price = await self.price_fetcher.fetch_price(url)
            if price:
                prices[platform] = price
        
        return prices

# Create Gradio interface
import gradio as gr

def create_gradio_interface():
    recommender = GiftRecommenderAPI()
    
    def recommend(text: str) -> Dict:
        return asyncio.run(recommender.get_recommendations(text))
    
    demo = gr.Interface(
        fn=recommend,
        inputs=gr.Textbox(
            lines=3,
            placeholder="Describe who you're buying a gift for (age, interests, occasion, etc.)"
        ),
        outputs=gr.JSON(),
        title="🎁 Smart Gift Recommender",
        description="Get personalized gift suggestions with real-time prices and explanations!",
        examples=[
            ["need a fifa latest game of EA"],
            ["a small kid of age 3 want him to have something like toy that teaches alphabets"],
            ["Looking for a gift for my mom who enjoys gardening and cooking"]
        ]
    )
    
    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch()