import gradio as gr import numpy as np from time import sleep import torch import cv2 from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation # from torchvision import transforms # class Count: # def __init__(self): # self.n = 0 # self.imout = np.zeros((1000, 1000)) # def step(self): # self.n += 1 cnt = 0 weights2load = 'segformer_ep15_loss0.00.pth' id2label = {0: 'seal', 255: 'bck'} label2id = {'seal': 0, 'bck': 255} model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b0", num_labels=2, id2label=id2label, label2id=label2id, ) image_processor = SegformerImageProcessor(reduce_labels=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.load_state_dict(torch.load(weights2load, weights_only=True, map_location=device)) model.to(device).eval() # counter = Count() def segment(im, interval_s=2): global cnt cnt += 1 im = cv2.resize(im, (im.shape[1] // 2, im.shape[0] // 2)) imout = im.copy() if cnt % 10 == 0: # if (counter.imout.sum() == 0) or ((cnt % 100) == 0): pixel_values = image_processor(im, return_tensors="pt").pixel_values.to(device) outputs = model(pixel_values=pixel_values) logits = outputs.logits.cpu().detach().numpy() ** 2 logits_n = (logits[0, 0] - logits[0, 0].min()) / (logits[0, 0].max() - logits[0, 0].min()) logits_n = cv2.resize(logits_n, (im.shape[1], im.shape[0])) imout[..., 1] = np.clip(imout[..., 1] + logits_n * 200, 0, 254) return imout, cnt #np.flipud(im) # with gr.Blocks() as demo: # inp = gr.Image(sources=["webcam"], streaming=True) # inp.stream(segment, inputs=inp, outputs=[gr.Image()]) demo = gr.Interface( segment, [gr.Image(sources=["webcam"], streaming=True)], [gr.Image(), gr.Number()], css=".output-image, .input-image, .image-preview {height: 400px !important}" ) if __name__ == "__main__": demo.queue().launch() # from gradio_webrtc import WebRTC # css = """.my-group {max-width: 600px !important; max-height: 600px !important;} # .my-column {display: flex !important; justify-content: center !important; align-items: center !important;}""" # with gr.Blocks(css=css) as demo: # gr.HTML( # ) # with gr.Column(elem_classes=["my-column"]): # with gr.Group(elem_classes=["my-group"]): # image = WebRTC(label="Stream") # image.stream(fn=segment, inputs=[image], outputs=[image]) # demo = gr.Interface( # fn=segment, # inputs=[gr.Image(sources=["webcam"], streaming=True)], # outputs=["image"], # title="Image Inference", # cache_examples=False, # live=True # ) # if __name__ == "__main__": # demo.queue().launch()