import gradio as gr import numpy as np from time import sleep import torch from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation # from torchvision import transforms class Count: def __init__(self): self.n = 0 self.imout = np.zeros((1000, 1000)) def step(self): self.n += 1 weights2load = 'segformer_ep15_loss0.00.pth' id2label = {0: 'seal', 255: 'bck'} label2id = {'seal': 0, 'bck': 255} model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b0", num_labels=2, id2label=id2label, label2id=label2id, ) image_processor = SegformerImageProcessor(reduce_labels=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.load_state_dict(torch.load(weights2load, weights_only=True, map_location=device)) model.to(device).eval() counter = Count() def flip_periodically(im, interval_s=2): """ Flips the image periodically with the given interval. Args: im: The input image. interval_ms: The interval in milliseconds between flips. Returns: The flipped image. """ counter.step() if (counter.imout.sum() == 0) or ((counter.n % 100) == 0): pixel_values = image_processor(im, return_tensors="pt").pixel_values.to(device) outputs = model(pixel_values=pixel_values) logits = outputs.logits.cpu().detach().numpy() ** 2 counter.imout = (logits[0, 0] - logits[0, 0].min()) / (logits[0, 0].max() - logits[0, 0].min()) return counter.imout, counter.n #np.flipud(im) with gr.Blocks() as demo: inp = gr.Image(sources=["webcam"], streaming=True) inp.stream(flip_periodically, inputs=inp, outputs=[gr.Image(), gr.Number()]) if __name__ == "__main__": demo.launch()