gra / run.py
noamholz's picture
Update run.py
baca7e9 verified
raw
history blame
2.37 kB
import gradio as gr
import numpy as np
from time import sleep
import torch
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
# from torchvision import transforms
# class Count:
# def __init__(self):
# self.n = 0
# self.imout = np.zeros((1000, 1000))
# def step(self):
# self.n += 1
# cnt = 0
weights2load = 'segformer_ep15_loss0.00.pth'
id2label = {0: 'seal', 255: 'bck'}
label2id = {'seal': 0, 'bck': 255}
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b0",
num_labels=2,
id2label=id2label,
label2id=label2id,
)
image_processor = SegformerImageProcessor(reduce_labels=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.load_state_dict(torch.load(weights2load, weights_only=True, map_location=device))
model.to(device).eval()
# counter = Count()
def segment(im, interval_s=2):
# if (counter.imout.sum() == 0) or ((cnt % 100) == 0):
pixel_values = image_processor(im, return_tensors="pt").pixel_values.to(device)
outputs = model(pixel_values=pixel_values)
logits = outputs.logits.cpu().detach().numpy() ** 2
imout = (logits[0, 0] - logits[0, 0].min()) / (logits[0, 0].max() - logits[0, 0].min())
return imout #, cnt #np.flipud(im)
# with gr.Blocks() as demo:
# inp = gr.Image(sources=["webcam"], streaming=True)
# inp.stream(segment, inputs=inp, outputs=[gr.Image(), gr.Number()])
# demo = gr.Interface(
# segment,
# [gr.Image(sources=["webcam"], streaming=True)],
# ["image"],
# )
# if __name__ == "__main__":
# demo.launch()
from gradio_webrtc import WebRTC
css = """.my-group {max-width: 600px !important; max-height: 600px !important;}
.my-column {display: flex !important; justify-content: center !important; align-items: center !important;}"""
with gr.Blocks(css=css) as demo:
gr.HTML(
)
with gr.Column(elem_classes=["my-column"]):
with gr.Group(elem_classes=["my-group"]):
image = WebRTC(label="Stream")
image.stream(
fn=segment, inputs=[image], outputs=[image], time_limit=10
)
if __name__ == "__main__":
demo.launch()