import gradio as gr | |
import numpy as np | |
from time import sleep | |
import torch | |
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation | |
# from torchvision import transforms | |
# class Count: | |
# def __init__(self): | |
# self.n = 0 | |
# self.imout = np.zeros((1000, 1000)) | |
# def step(self): | |
# self.n += 1 | |
# cnt = 0 | |
weights2load = 'segformer_ep15_loss0.00.pth' | |
id2label = {0: 'seal', 255: 'bck'} | |
label2id = {'seal': 0, 'bck': 255} | |
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b0", | |
num_labels=2, | |
id2label=id2label, | |
label2id=label2id, | |
) | |
image_processor = SegformerImageProcessor(reduce_labels=True) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.load_state_dict(torch.load(weights2load, weights_only=True, map_location=device)) | |
model.to(device).eval() | |
# counter = Count() | |
def segment(im, interval_s=2): | |
print(im) | |
# if (counter.imout.sum() == 0) or ((cnt % 100) == 0): | |
pixel_values = image_processor(im, return_tensors="pt").pixel_values.to(device) | |
outputs = model(pixel_values=pixel_values) | |
logits = outputs.logits.cpu().detach().numpy() ** 2 | |
imout = (logits[0, 0] - logits[0, 0].min()) / (logits[0, 0].max() - logits[0, 0].min()) | |
return imout #, cnt #np.flipud(im) | |
# with gr.Blocks() as demo: | |
# inp = gr.Image(sources=["webcam"], streaming=True) | |
# inp.stream(segment, inputs=inp, outputs=[gr.Image()]) | |
demo = gr.Interface( | |
segment, | |
gr.Video(sources=["webcam"]), | |
gr.Video(streaming=True, autoplay=True) | |
# [gr.Image(sources=["webcam"], streaming=False)], | |
# ["image"], | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() | |
# from gradio_webrtc import WebRTC | |
# css = """.my-group {max-width: 600px !important; max-height: 600px !important;} | |
# .my-column {display: flex !important; justify-content: center !important; align-items: center !important;}""" | |
# with gr.Blocks(css=css) as demo: | |
# gr.HTML( | |
# ) | |
# with gr.Column(elem_classes=["my-column"]): | |
# with gr.Group(elem_classes=["my-group"]): | |
# image = WebRTC(label="Stream") | |
# image.stream(fn=segment, inputs=[image], outputs=[image]) | |
# demo = gr.Interface( | |
# fn=segment, | |
# inputs=[gr.Image(sources=["webcam"], streaming=True)], | |
# outputs=["image"], | |
# title="Image Inference", | |
# cache_examples=False, | |
# live=True | |
# ) | |
# if __name__ == "__main__": | |
# demo.queue().launch() |