Spaces:
Runtime error
Runtime error
File size: 2,381 Bytes
82ad0f2 9d761af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
from functools import partial
from random import randint
import gradio as gr
import torch
from tqdm import tqdm
from NestedPipeline import NestedStableDiffusionPipeline
from NestedScheduler import NestedScheduler
def run(prompt, outer, inner, random_seed, pipe):
seed = 24 if not random_seed else randint(0, 10000)
generator = torch.Generator(device).manual_seed(seed)
outer_diffusion = tqdm(range(outer), desc="Outer Diffusion")
inner_diffusion = tqdm(range(inner), desc="Inner Diffusion")
cur = [0, 0]
for i, j, im in pipe(prompt, num_inference_steps=outer, num_inner_steps=inner, generator=generator):
if cur[-1] != j:
inner_diffusion.update()
cur[-1] = j
if cur[0] != i and i != outer:
cur[0] = i
outer_diffusion.update()
cur[-1] = 0
inner_diffusion = tqdm(range(inner), desc="Inner Diffusion")
elif cur[0] != i:
outer_diffusion.update()
monospace_s, monospace_e = "<p style=\"font-family:'Lucida Console', monospace\">", "</p>"
yield f"{monospace_s}{outer_diffusion.__str__().replace(' ', ' ')}{monospace_e} \n {monospace_s}{inner_diffusion.__str__().replace(' ', ' ')}{monospace_e}", im[0]
if __name__ == "__main__":
scheduler = NestedScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
prediction_type='sample', clip_sample=False, set_alpha_to_one=False)
pipe = NestedStableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", revision="fp16",
torch_dtype=torch.float16, scheduler=scheduler)
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe.to(device)
interface = partial(run, pipe=pipe)
demo = gr.Interface(
fn=interface,
inputs=[gr.Textbox(value="a photograph of a nest with a blue egg inside"),
gr.Slider(minimum=1, maximum=10, value=4, step=1),
gr.Slider(minimum=5, maximum=50, value=10, step=1),
"checkbox"],
outputs=[gr.HTML(), gr.Image(shape=[512, 512], elem_id="output_image").style(width=512, height=512)],
# css=".output_image {height: 10% !important; width: 10% !important;}",
allow_flagging="never"
)
demo.queue()
demo.launch()
|