import gradio as gr from transformers import pipeline # Load the text generation pipeline with the CodeLlama model text_generation_pipeline = pipeline("text-generation", model="codellama/CodeLlama-70b-Instruct-hf") # Define a function to generate responses based on user input def generate_response(input_text): # Generate a response using the pipeline generated_response = text_generation_pipeline(input_text, max_length=200)[0]['generated_text'] return generated_response # Create Gradio interface gr.Interface( fn=generate_response, inputs="text", outputs="text", title="CodeLlama Assistant", description="Ask me anything and I will respond!", ).launch()