File size: 3,219 Bytes
b00a147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import streamlit as st
import pandas as pd
from streamlit_extras.stylable_container import stylable_container
import time
import zipfile
import io
import nltk
nltk.download('punkt_tab')
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
import re



with st.sidebar:
  with stylable_container(
    key="test_button",
    
    css_styles="""
        button { 
            background-color: #0000ff;
            border: none;
            color: white;
        }
        """,
    ):
        st.button("DEMO APP")
        

  st.subheader("Glossary of tags", divider = "red")
  

  per = st.checkbox("I")
  if per:
    st.write("Person's name")
      
  org = st.checkbox("ORG")
  if org:
    st.write("Organization")
      
  loc = st.checkbox("LOC")
  if loc:
    st.write("Location")
      
  PER = st.checkbox("B-PER")
  if PER:
    st.write("Beginning of a person’s name right after another person’s name")
      
  ORG = st.checkbox("B-ORG")
  if ORG:
    st.write("Beginning of an organisation right after another organization")
      
  LOC = st.checkbox("B-LOC")
  if LOC:
    st.write("Beginning of a location right after another location")
       
  O = st.checkbox("O")
  if O:
    st.write("Outside of a named entity")
            





  
  
st.subheader(":blue[AI Entity Extractor]")

st.divider()


def clear_text():
    st.session_state["text"] = ""

text = st.text_input("Paste your text here and then press **enter**. The length of your text should not exceed 2000 words.", key="text")    
st.button("Clear text", on_click=clear_text)
st.write(text)



from nltk.tokenize import word_tokenize

text1 = re.sub(r'[^\w\s]','',text)
tokens = word_tokenize(text1)
st.write("Length", len(tokens))
st.divider()

number = 2000

if text is not None and len(tokens) > number:
  st.warning('The length of your text should not exceed 2000 words.')
  st.stop()



if text is not None:
    token_classifier = pipeline(model="Davlan/bert-base-multilingual-cased-ner-hrl", aggregation_strategy="simple")
    
    tokens = token_classifier(text)
    
    df = pd.DataFrame(tokens)
    df = df.drop(df[df['word'] == '##s'].index)



import zipfile
import io

dfa = pd.DataFrame(
       data = {
           'I': ['Person'],
           'ORG': ['Organization'],
           'LOC': ['Location'],
           'B-PER': ['Beginning of a person’s name right after another person’s name'],
           'B-ORG': ['Beginning of an organisation right after another organization '],
           'B-LOC': ['Beginning of a location right after another location'],
           'O': ['Outside of a named entity ']
        
        
        }
    )





buf = io.BytesIO()

with zipfile.ZipFile(buf, "x") as myzip:
    if text is not None:
        myzip.writestr("Summary of the results.csv", df.to_csv())
        
        myzip.writestr("Glossary of tags.csv", dfa.to_csv())
  

tab1, tab2 = st.tabs(["Summarize", "Download"])


with tab1:
    if text is not None:
        st.dataframe(df, width = 1000)



with tab2:
  st.download_button(
    label = "Download zip file",
    data=buf.getvalue(),
    file_name="zip file.zip",
    mime="application/zip",
)