Spaces:
Running
Running
File size: 3,219 Bytes
b00a147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import streamlit as st
import pandas as pd
from streamlit_extras.stylable_container import stylable_container
import time
import zipfile
import io
import nltk
nltk.download('punkt_tab')
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
import re
with st.sidebar:
with stylable_container(
key="test_button",
css_styles="""
button {
background-color: #0000ff;
border: none;
color: white;
}
""",
):
st.button("DEMO APP")
st.subheader("Glossary of tags", divider = "red")
per = st.checkbox("I")
if per:
st.write("Person's name")
org = st.checkbox("ORG")
if org:
st.write("Organization")
loc = st.checkbox("LOC")
if loc:
st.write("Location")
PER = st.checkbox("B-PER")
if PER:
st.write("Beginning of a person’s name right after another person’s name")
ORG = st.checkbox("B-ORG")
if ORG:
st.write("Beginning of an organisation right after another organization")
LOC = st.checkbox("B-LOC")
if LOC:
st.write("Beginning of a location right after another location")
O = st.checkbox("O")
if O:
st.write("Outside of a named entity")
st.subheader(":blue[AI Entity Extractor]")
st.divider()
def clear_text():
st.session_state["text"] = ""
text = st.text_input("Paste your text here and then press **enter**. The length of your text should not exceed 2000 words.", key="text")
st.button("Clear text", on_click=clear_text)
st.write(text)
from nltk.tokenize import word_tokenize
text1 = re.sub(r'[^\w\s]','',text)
tokens = word_tokenize(text1)
st.write("Length", len(tokens))
st.divider()
number = 2000
if text is not None and len(tokens) > number:
st.warning('The length of your text should not exceed 2000 words.')
st.stop()
if text is not None:
token_classifier = pipeline(model="Davlan/bert-base-multilingual-cased-ner-hrl", aggregation_strategy="simple")
tokens = token_classifier(text)
df = pd.DataFrame(tokens)
df = df.drop(df[df['word'] == '##s'].index)
import zipfile
import io
dfa = pd.DataFrame(
data = {
'I': ['Person'],
'ORG': ['Organization'],
'LOC': ['Location'],
'B-PER': ['Beginning of a person’s name right after another person’s name'],
'B-ORG': ['Beginning of an organisation right after another organization '],
'B-LOC': ['Beginning of a location right after another location'],
'O': ['Outside of a named entity ']
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "x") as myzip:
if text is not None:
myzip.writestr("Summary of the results.csv", df.to_csv())
myzip.writestr("Glossary of tags.csv", dfa.to_csv())
tab1, tab2 = st.tabs(["Summarize", "Download"])
with tab1:
if text is not None:
st.dataframe(df, width = 1000)
with tab2:
st.download_button(
label = "Download zip file",
data=buf.getvalue(),
file_name="zip file.zip",
mime="application/zip",
)
|