Spaces:
Running
Running
File size: 3,798 Bytes
b00a147 6a5c18e a70f981 77bbf28 a70f981 bf876c7 a70f981 bf876c7 a70f981 bf876c7 a70f981 bf876c7 a70f981 bf876c7 b00a147 7b011bf b00a147 7b011bf b00a147 86b9a01 b00a147 7b011bf b00a147 7b011bf b00a147 99bdd8b 7b60d65 99bdd8b 9b5dbe0 b00a147 7b011bf b00a147 7b011bf b00a147 d0f50bb e4e4d5f d0f50bb b00a147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import streamlit as st
import pandas as pd
from streamlit_extras.stylable_container import stylable_container
import time
import zipfile
import io
import nltk
nltk.download('punkt_tab')
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
import re
with st.sidebar:
with stylable_container(
key="test_button",
css_styles="""
button {
background-color: #0000ff;
border: none;
color: white;
}
""",
):
st.button("DEMO APP")
st.subheader("Glossary of tags", divider = "red")
with st.expander("PER"):
st.write('''
Person's name
''')
with st.expander("ORG"):
st.write('''
Organization name
''')
with st.expander("LOC"):
st.write('''
Location name
''')
with st.expander("MISC"):
st.write('''
Miscellaneous
''')
with st.expander("entity_group"):
st.write('''
This is the tag that has been assigned to an entity.
''')
with st.expander("score"):
st.write('''
This indicates the confidence level that a tag has been assigned to an entity.
''')
with st.expander("word"):
st.write('''
This is the entity that has been extracted from your text data.
''')
with st.expander("start"):
st.write('''
This is the index of the first character of the entity in your text data.
''')
with st.expander("end"):
st.write('''
This is the index of the character immediately after the last character of the entity.
''')
st.subheader(":blue[AI Entity Extractor]")
st.write("made by [nlpblogs](https://nlpblogs.com/)")
st.write("Apache 2.0")
st.divider()
def clear_text():
st.session_state["text"] = ""
text = st.text_area("Paste your text here and then press **Ctrl + Enter**. The length of your text should not exceed 1000 words.", key="text")
st.button("Clear text", on_click=clear_text)
st.write(text)
from nltk.tokenize import word_tokenize
text1 = re.sub(r'[^\w\s]','',text)
tokens = word_tokenize(text1)
st.write("Length", len(tokens))
st.divider()
number = 1000
if text is not None and len(tokens) > number:
st.warning('The length of your text should not exceed 1000 words.')
st.stop()
import time
with st.spinner('Wait for it...'):
time.sleep(5)
if text is not None:
token_classifier = pipeline(model="dslim/bert-base-NER", aggregation_strategy="simple")
tokens = token_classifier(text)
df = pd.DataFrame(tokens)
import zipfile
import io
dfa = pd.DataFrame(
data = {
'PER': ['Person'],
'ORG': ['Organization'],
'LOC': ['Location'],
'MISC': ['Miscellaneous'],
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "x") as myzip:
if text is not None:
myzip.writestr("Summary of the results.csv", df.to_csv())
myzip.writestr("Glossary of tags.csv", dfa.to_csv())
tab1, tab2 = st.tabs(["Summarize", "Download"])
with tab1:
if text is not None:
st.dataframe(df, width = 1000)
with tab2:
st.download_button(
label = "Download zip file",
data=buf.getvalue(),
file_name="zip file.zip",
mime="application/zip",
)
with st.expander("Limitations and Bias"):
st.write('''
The Named Entity Recognition (NER) model used in this demo app is limited by its training dataset of entity-annotated news articles from a specific span of time. This means that it might not perform excellent for all use cases in different domains. Furthermore, the model may occassionally split words into different parts.
''')
|