File size: 3,798 Bytes
b00a147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a5c18e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a70f981
 
 
 
 
 
 
 
 
 
 
77bbf28
a70f981
 
 
 
bf876c7
a70f981
bf876c7
a70f981
bf876c7
 
a70f981
bf876c7
a70f981
bf876c7
 
b00a147
7b011bf
b00a147
 
 
 
7b011bf
 
b00a147
 
 
 
 
 
 
86b9a01
b00a147
 
 
 
 
 
 
 
 
 
 
 
7b011bf
b00a147
 
7b011bf
b00a147
 
 
99bdd8b
 
 
 
7b60d65
99bdd8b
 
9b5dbe0
b00a147
 
 
 
 
 
 
 
7b011bf
b00a147
 
7b011bf
 
b00a147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f50bb
 
e4e4d5f
d0f50bb
b00a147
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import streamlit as st
import pandas as pd
from streamlit_extras.stylable_container import stylable_container
import time
import zipfile
import io
import nltk
nltk.download('punkt_tab')
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
import re



with st.sidebar:
  with stylable_container(
    key="test_button",
    
    css_styles="""
        button { 
            background-color: #0000ff;
            border: none;
            color: white;
        }
        """,
    ):
        st.button("DEMO APP")
        

  st.subheader("Glossary of tags", divider = "red")
  

  

  with st.expander("PER"):
    st.write('''
        Person's name
    ''')

  with st.expander("ORG"):
    st.write('''
        Organization name
    ''')

  with st.expander("LOC"):
    st.write('''
        Location name
    ''')

  with st.expander("MISC"):
    st.write('''
        Miscellaneous 
    ''')

  with st.expander("entity_group"):
    st.write('''
        This is the tag that has been assigned to an entity.
    ''')

  with st.expander("score"):
    st.write('''
        This indicates the confidence level that a tag has been assigned to an entity.
    ''')

  with st.expander("word"):
    st.write('''
        This is the entity that has been extracted from your text data.
    ''')

  with st.expander("start"):
    st.write('''
        This is the index of the first character of the entity in your text data.
    ''')

  with st.expander("end"):
    st.write('''
        This is the index of the character immediately after the last character of the entity.
    ''')
    
  
      
  
            


st.subheader(":blue[AI Entity Extractor]")
st.write("made by [nlpblogs](https://nlpblogs.com/)")
st.write("Apache 2.0")

st.divider()


def clear_text():
    st.session_state["text"] = ""

text = st.text_area("Paste your text here and then press **Ctrl + Enter**. The length of your text should not exceed 1000 words.", key="text")    
st.button("Clear text", on_click=clear_text)
st.write(text)



from nltk.tokenize import word_tokenize

text1 = re.sub(r'[^\w\s]','',text)
tokens = word_tokenize(text1)
st.write("Length", len(tokens))
st.divider()

number = 1000

if text is not None and len(tokens) > number:
  st.warning('The length of your text should not exceed 1000 words.')
  st.stop()


import time
with st.spinner('Wait for it...'):
    time.sleep(5)
    if text is not None:
        token_classifier = pipeline(model="dslim/bert-base-NER", aggregation_strategy="simple")
        tokens = token_classifier(text)
        df = pd.DataFrame(tokens)
    



import zipfile
import io

dfa = pd.DataFrame(
       data = {
           'PER': ['Person'],
           'ORG': ['Organization'],
           'LOC': ['Location'],
           'MISC': ['Miscellaneous'],
           
        
        
        }
    )





buf = io.BytesIO()

with zipfile.ZipFile(buf, "x") as myzip:
    if text is not None:
        myzip.writestr("Summary of the results.csv", df.to_csv())
        
        myzip.writestr("Glossary of tags.csv", dfa.to_csv())
  

tab1, tab2 = st.tabs(["Summarize", "Download"])


with tab1:
    if text is not None:
        st.dataframe(df, width = 1000)



with tab2:
  st.download_button(
    label = "Download zip file",
    data=buf.getvalue(),
    file_name="zip file.zip",
    mime="application/zip",
)

  

 

with st.expander("Limitations and Bias"):
    st.write('''
        The Named Entity Recognition (NER) model used in this demo app is limited by its training dataset of entity-annotated news articles from a specific span of time. This means that it might not perform excellent for all use cases in different domains. Furthermore, the model may occassionally split words into different parts.
    ''')