nlpblogs's picture
Update app.py
bcd98d4 verified
raw
history blame
9.21 kB
import streamlit as st
import pandas as pd
import io
import plotly.express as px
import zipfile
from gliner import GLiNER
import os
from streamlit_extras.stylable_container import stylable_container
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
# --- App Header and Info ---
st.subheader("Free NER Web App", divider="red")
st.link_button("DEMO APP by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes on the Free NER Web App**")
expander.write('''
**Named Entities:** This Free NER Web App predicts nine (9) labels
grouped into three categories: **People** (person, organization, position),
**Locations** (country, city), and **Numbers** (date, seconds, money, percent value).
Results are presented in an easy-to-read table, visualized in an
interactive treemap, pie chart, and bar chart, and are available for download
along with a Glossary of tags.
**How to Use:** Type or paste your text and press Ctrl + Enter. Then,
click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:** Unlimited number of Result requests.
**Customization:** To change the app's background color to white or
black, click the three-dot menu on the right-hand side of your app, go to
Settings and then Choose app theme, colors and fonts.
**Technical issues:** If your connection times out, please refresh the
page or reopen the app's URL.
For any errors or inquiries, please contact us at [email protected]
''')
# --- Sidebar ---
with st.sidebar:
container = st.container(border=True)
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
st.subheader("Related NER Web Apps", divider="red")
st.link_button("Scandinavian JSON Entity Finder", "https://nlpblogs.com/shop/named-entity-recognition-ner/scandinavian-json-entity-finder/", type="primary")
# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
comet_initialized = True
else:
comet_initialized = False
st.warning("Comet ML not initialized. Check environment variables.")
# --- Cache the GLiNER model ---
@st.cache_resource
def load_gliner_model():
"""Caches the GLiNER model to prevent re-loading on every app rerun."""
return GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
# Load the model using the cached function
model = load_gliner_model()
# --- End Caching ---
# --- Text Input and Clear Button ---
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
st.write("**Input text**: ", text)
def clear_text():
"""Clears the text area."""
st.session_state['my_text_area'] = ""
st.button("Clear text", on_click=clear_text)
st.divider()
# --- Results Section ---
if st.button("Results"):
start_time = time.time()
if not text.strip(): # Check if the input text is empty
st.warning("Please enter some text to extract entities.")
else:
with st.spinner("Extracting entities..."): # Spinner while processing
# --- MODIFICATION: ADDED "seconds" to labels ---
labels = ["person", "country", "city", "organization", "date", "seconds", "money", "percent value", "position"]
entities = model.predict_entities(text, labels)
df = pd.DataFrame(entities)
# --- MODIFICATION: ADDED "seconds" to category mapping ---
if not df.empty:
# Create a mapping dictionary for labels to categories
category_mapping = {
"person": "People",
"organization": "People",
"position": "People",
"country": "Locations",
"city": "Locations",
"date": "Time",
"seconds": "Time",
"money": "Numbers",
"percent value": "Numbers"
}
# Add a new 'category' column to the DataFrame
df['category'] = df['label'].map(category_mapping)
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text", text)
experiment.log_table("predicted_entities", df)
experiment.end()
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
df_styled = df.style.set_properties(**properties)
st.dataframe(df_styled)
with st.expander("See Glossary of tags"):
st.write('''
'**text**': ['entity extracted from your text data']
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
'**label**': ['label (tag) assigned to a given extracted entity']
'**category**': ['the high-level category for the label']
'**start**': ['index of the start of the corresponding entity']
'**end**': ['index of the end of the corresponding entity']
''')
# --- Visualizations ---
if not df.empty: # Only plot if DataFrame is not empty
st.subheader("Tree map", divider="red")
# Modified treemap path to show category as the first level
fig = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig)
if comet_initialized:
experiment.log_figure(figure=fig, figure_name="entity_treemap_categories")
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie Chart", divider="red")
# Pie chart now visualizes the distribution of categories
value_counts1 = df['category'].value_counts()
df1 = pd.DataFrame(value_counts1)
final_df = df1.reset_index().rename(columns={"index": "category"})
fig1 = px.pie(final_df, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
fig1.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig1)
if comet_initialized:
experiment.log_figure(figure=fig1, figure_name="category_pie_chart")
with col2:
st.subheader("Bar Chart", divider="red")
# Bar chart now visualizes the distribution of categories
fig2 = px.bar(final_df, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
st.plotly_chart(fig2)
if comet_initialized:
experiment.log_figure(figure=fig2, figure_name="category_bar_chart")
else:
st.info("No entities found in the provided text.")
# --- Download Buttons ---
dfa = pd.DataFrame(
data={
'text': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'label': ['label (tag) assigned to a given extracted entity'],
'category': ['the high-level category for the label'],
'start': ['index of the start of the corresponding entity'],
'end': ['index of the end of the corresponding entity'],
})
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="zip file.zip",
mime="application/zip",
)
st.divider()
end_time = time.time()
elapsed_time = end_time - start_time
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")