File size: 9,432 Bytes
f448bd6 30c464f f448bd6 30c464f f448bd6 5870362 30c464f f448bd6 30c464f f448bd6 6d6f24b dad6db7 d5add9d dad6db7 5870362 d5add9d 5870362 7512bb2 bcd98d4 7512bb2 bcd98d4 fb2cd57 bcd98d4 dad6db7 5870362 50bd6e7 5870362 dad6db7 f448bd6 dad6db7 bcd98d4 f47cc25 dad6db7 5870362 dad6db7 f448bd6 5870362 bcd98d4 5870362 f448bd6 dad6db7 f448bd6 bcd98d4 dad6db7 bcd98d4 dad6db7 bcd98d4 f448bd6 dad6db7 bcd98d4 dad6db7 e0fce61 dad6db7 e0fce61 dad6db7 e0fce61 bcd98d4 dad6db7 e0fce61 dad6db7 bcd98d4 dad6db7 f448bd6 bcd98d4 dad6db7 bcd98d4 dad6db7 bcd98d4 dad6db7 bcd98d4 dad6db7 bcd98d4 dad6db7 bcd98d4 dad6db7 a7664ff 1275feb dad6db7 bcd98d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import streamlit as st
import time
import pandas as pd
import io
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile
from gliner import GLiNER # Import GLiNER
import os
from comet_ml import Experiment
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
# --- App Header and Info ---
st.subheader("Free NER Web App", divider="red")
st.link_button("DEMO APP by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes on the Free NER Web App**")
expander.write('''
**Named Entities:** This Free NER Web App predicts eight (8) labels
grouped into three categories: **People** (person, organization, position),
**Locations** (country, city), and **Numbers** (date, money, percent value).
Results are presented in an easy-to-read table, visualized in an
interactive treemap, pie chart, and bar chart, and are available for download
along with a Glossary of tags.
**How to Use:** Type or paste your text and press Ctrl + Enter. Then,
click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:** Unlimited number of Result requests.
**Supported Languages:** English
**Customization:** To change the app's background color to white or
black, click the three-dot menu on the right-hand side of your app, go to
Settings and then Choose app theme, colors and fonts.
**Technical issues:** If your connection times out, please refresh the
page or reopen the app's URL.
For any errors or inquiries, please contact us at [email protected]
''')
# --- Sidebar ---
with st.sidebar:
container = st.container(border=True)
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
st.subheader("Build your own NER Web App in a minute without writing a single line of code.", divider="red")
st.link_button("NER File Builder", "https://nlpblogs.com/shop/named-entity-recognition-ner/ner-file-builder/", type="primary")
# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
comet_initialized = True
else:
comet_initialized = False
st.warning("Comet ML not initialized. Check environment variables.")
# --- Cache the GLiNER model ---
@st.cache_resource
def load_gliner_model():
"""Caches the GLiNER model to prevent re-loading on every app rerun."""
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5")
# Load the model using the cached function
model = load_gliner_model()
# --- End Caching ---
# --- Text Input and Clear Button ---
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
st.write("**Input text**: ", text)
def clear_text():
"""Clears the text area."""
st.session_state['my_text_area'] = ""
st.button("Clear text", on_click=clear_text)
st.divider()
# --- Results Section ---
if st.button("Results"):
start_time = time.time()
if not text.strip(): # Check if the input text is empty
st.warning("Please enter some text to extract entities.")
else:
with st.spinner("Extracting entities..."): # Spinner while processing
# --- MODIFICATION: ADDED "seconds" to labels ---
labels = ["person", "country", "city", "organization", "date", "seconds", "money", "percent value", "position"]
entities = model.predict_entities(text, labels)
df = pd.DataFrame(entities)
# --- MODIFICATION: ADDED "seconds" to category mapping ---
if not df.empty:
# Create a mapping dictionary for labels to categories
category_mapping = {
"person": "People",
"organization": "People",
"position": "People",
"country": "Locations",
"city": "Locations",
"date": "Time",
"seconds": "Time",
"money": "Numbers",
"percent value": "Numbers"
}
# Add a new 'category' column to the DataFrame
df['category'] = df['label'].map(category_mapping)
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text", text)
experiment.log_table("predicted_entities", df)
experiment.end()
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
df_styled = df.style.set_properties(**properties)
st.dataframe(df_styled)
with st.expander("See Glossary of tags"):
st.write('''
'**text**': ['entity extracted from your text data']
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
'**label**': ['label (tag) assigned to a given extracted entity']
'**category**': ['the high-level category for the label']
'**start**': ['index of the start of the corresponding entity']
'**end**': ['index of the end of the corresponding entity']
''')
# --- Visualizations ---
if not df.empty: # Only plot if DataFrame is not empty
st.subheader("Tree map", divider="red")
# Modified treemap path to show category as the first level
fig = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig)
if comet_initialized:
experiment.log_figure(figure=fig, figure_name="entity_treemap_categories")
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie Chart", divider="red")
# Pie chart now visualizes the distribution of categories
value_counts1 = df['category'].value_counts()
df1 = pd.DataFrame(value_counts1)
final_df = df1.reset_index().rename(columns={"index": "category"})
fig1 = px.pie(final_df, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
fig1.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig1)
if comet_initialized:
experiment.log_figure(figure=fig1, figure_name="category_pie_chart")
with col2:
st.subheader("Bar Chart", divider="red")
# Bar chart now visualizes the distribution of categories
fig2 = px.bar(final_df, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
st.plotly_chart(fig2)
if comet_initialized:
experiment.log_figure(figure=fig2, figure_name="category_bar_chart")
else:
st.info("No entities found in the provided text.")
# --- Download Buttons ---
dfa = pd.DataFrame(
data={
'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'],
'Description': [
'entity extracted from your text data',
'label (tag) assigned to a given extracted entity',
'accuracy score; how accurately a tag has been assigned to a given entity',
'index of the start of the corresponding entity',
'index of the end of the corresponding entity',
'the broader category the entity belongs to',
]
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="zip file.zip",
mime="application/zip",
)
st.divider()
end_time = time.time()
elapsed_time = end_time - start_time
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|