File size: 12,848 Bytes
a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb a2257f8 cf54cfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import streamlit as st
import time
import pandas as pd
import io
from transformers import pipeline
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile
from PyPDF2 import PdfReader
import docx
import os
from comet_ml import Experiment
import re
import numpy as np
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
# --- Configuration ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = False
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
comet_initialized = True
# --- Initialize session state ---
if 'file_upload_attempts' not in st.session_state:
st.session_state['file_upload_attempts'] = 0
max_attempts = 10
# --- Helper function for model loading ---
@st.cache_resource
def load_ner_model():
"""Loads the pre-trained NER model and caches it."""
return pipeline("token-classification", model="DeepMount00/Italian_NER_XXL", aggregation_strategy="max")
# --- UI Elements ---
st.subheader("58-Italian Named Entity Recognition Web App", divider="rainbow")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes on the 58-Italian-Named Entity Recognition Web App**")
expander.write('''
**Named Entities:**
This 58-Italian-Named Entity Recognition Web App predicts fifty-eight (58) labels
("**INDIRIZZO**: Identifica un indirizzo fisico.
**VALUTA**: Rappresenta una valuta.
**CVV**: Codice di sicurezza della carta di credito.
**NUMERO_CONTO**: Numero di un conto bancario.
**BIC**: Codice identificativo di una banca (Bank Identifier Code).
**IBAN**: Numero di conto bancario internazionale.
**STATO**: Identifica un paese o una nazione.
**NOME**: Riferito al nome di una persona.
**COGNOME**: Riferito al cognome di una persona.
**CODICE_POSTALE**: Codice postale di un'area geografica.
**IP**: Indirizzo IP di un dispositivo in rete.
**ORARIO**: Riferito a un orario specifico.
**URL**: Indirizzo web (Uniform Resource Locator).
**LUOGO**: Identifica un luogo geografico.
**IMPORTO**: Riferito a una somma di denaro.
**EMAIL**: Indirizzo di posta elettronica.
**PASSWORD**: Parola chiave per l'accesso a sistemi protetti.
**NUMERO_CARTA**: Numero di una carta di credito o debito.
**TARGA_VEICOLO**: Numero di targa di un veicolo.
**DATA_NASCITA**: Data di nascita di una persona.
**DATA_MORTE**: Data di decesso di una persona.
**RAGIONE_SOCIALE**: Nome legale di un'azienda o entità commerciale.
**ETA**: Età di una persona.
**DATA**: Riferita a una data generica.
**PROFESSIONE**: Occupazione o lavoro di una persona.
**PIN**: Numero di identificazione personale.
**NUMERO_TELEFONO**: Numero telefonico.
**FOGLIO**: Riferito a un foglio di documentazione.
**PARTICELLA**: Riferito a una particella catastale.
**CARTELLA_CLINICA**: Documentazione medica di un paziente.
**MALATTIA**: Identifica una malattia o condizione medica.
**MEDICINA**: Riferito a un farmaco o trattamento medico.
**CODICE_FISCALE**: Codice fiscale personale o aziendale.
**NUMERO_DOCUMENTO**: Numero di un documento ufficiale.
**STORIA_CLINICA**: Registro delle condizioni mediche di un paziente.
**AVV_NOTAIO**: Identifica un avvocato o notaio.
**P_IVA**: Partita IVA di un'azienda o professionista.
**LEGGE**: Riferito a una legge specifica.
**TASSO_MUTUO**: Tasso di interesse di un mutuo.
**N_SENTENZA**: Numero di una sentenza legale.
**MAPPALE**: Riferito a un mappale catastale.
**SUBALTERNO**: Riferito a un subalterno catastale.
**REGIME_PATRIMONIALE**: Stato patrimoniale in ambito legale.
**STATO_CIVILE**: Stato civile di una persona.
**BANCA**: Identifica una banca o istituto di credito.
**BRAND**: Marchio o brand commerciale.
**NUM_ASSEGNO_BANCARIO**: Numero di un assegno bancario.
**IMEI**: Numero di identificazione internazionale di un dispositivo mobile.
**N_LICENZA**: Numero di una licenza specifica.
**IPV6_1**: Indirizzo IP versione 6.
**MAC**: Indirizzo MAC di un dispositivo di rete.
**USER_AGENT**: Identifica il software usato per accedere a una rete.
**TRIBUNALE**: Identifica un tribunale specifico.
**STRENGTH**: Riferito alla forza o intensità di del medicinale.
**FREQUENZA**: Riferito alla frequenza di un trattamento medico.
**DURATION**: Durata di un evento o trattamento.
**DOSAGGIO**: Quantità di un medicinale da assumere.
**FORM**: Forma del medicinale, ad esempio compresse").
Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
**How to Use:**
Upload your .pdf or .docx file. Then, click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:**
You can request results up to 10 times.
**Customization:**
To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**Technical issues:**
If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at [email protected]
''')
with st.sidebar:
container = st.container(border=True)
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
st.subheader("Related NLP Web Apps", divider="rainbow")
st.link_button("8-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/8-named-entity-recognition-web-app/", type="primary")
# --- File Upload ---
upload_file = st.file_uploader("Upload your file. Accepted file formats include: .pdf, .docx", type=['pdf', 'docx'])
text = None
df = None
if upload_file is not None:
file_extension = upload_file.name.split('.')[-1].lower()
if file_extension == 'pdf':
try:
pdf_reader = PdfReader(upload_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
st.write("File uploaded successfully. Due to security protocols, the file content is hidden.")
except Exception as e:
st.error(f"An error occurred while reading PDF: {e}")
text = None
elif file_extension == 'docx':
try:
doc = docx.Document(upload_file)
text = "\n".join([para.text for para in doc.paragraphs])
st.write("File uploaded successfully. Due to security protocols, the file content is hidden.")
except Exception as e:
st.error(f"An error occurred while reading docx: {e}")
text = None
else:
st.warning("Unsupported file type.")
text = None
st.divider()
# --- Results Button and Processing Logic ---
if st.button("Results"):
if not comet_initialized:
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
if st.session_state['file_upload_attempts'] >= max_attempts:
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
st.stop()
if text is None:
st.warning("Please upload a supported file (.pdf or .docx) before requesting results.")
st.stop()
st.session_state['file_upload_attempts'] += 1
with st.spinner("Analyzing text...", show_time=True):
# Load model (cached)
model = load_ner_model()
text_entities = model(text)
df = pd.DataFrame(text_entities)
# Clean and filter DataFrame
pattern = r'[^\w\s]'
df['word'] = df['word'].replace(pattern, '', regex=True)
df = df.replace('', 'Unknown').dropna()
if df.empty:
st.warning("No entities were extracted from the uploaded text.")
st.stop()
if comet_initialized:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
experiment.log_parameter("input_text_length", len(text))
experiment.log_table("predicted_entities", df)
# --- Display Results ---
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
df_styled = df.style.set_properties(**properties)
st.dataframe(df_styled, use_container_width=True)
with st.expander("See Glossary of tags"):
st.write('''
'**word**': ['entity extracted from your text data']
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
'**entity_group**': ['label (tag) assigned to a given extracted entity']
'**start**': ['index of the start of the corresponding entity']
'**end**': ['index of the end of the corresponding entity']
''')
# --- Visualizations ---
st.subheader("Tree map", divider="rainbow")
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'word', 'entity_group'],
values='score', color='entity_group')
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig_treemap)
if comet_initialized:
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
value_counts1 = df['entity_group'].value_counts()
final_df_counts = value_counts1.reset_index().rename(columns={"index": "entity_group"})
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie Chart", divider="rainbow")
fig_pie = px.pie(final_df_counts, values='count', names='entity_group', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig_pie)
if comet_initialized:
experiment.log_figure(figure=fig_pie, figure_name="label_pie_chart")
with col2:
st.subheader("Bar Chart", divider="rainbow")
fig_bar = px.bar(final_df_counts, x="count", y="entity_group", color="entity_group", text_auto=True, title='Occurrences of predicted labels')
st.plotly_chart(fig_bar)
if comet_initialized:
experiment.log_figure(figure=fig_bar, figure_name="label_bar_chart")
# --- Downloadable Content ---
dfa = pd.DataFrame(
data={
'word': ['entity extracted from your text data'],
'score': ['accuracy score; how accurately a tag has been assigned to a given entity'],
'entity_group': ['label (tag) assigned to a given extracted entity'],
'start': ['index of the start of the corresponding entity'],
'end': ['index of the end of the corresponding entity'],
})
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="nlpblogs_ner_results.zip",
mime="application/zip",
)
if comet_initialized:
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
st.divider()
if comet_initialized:
experiment.end()
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")
|