File size: 11,998 Bytes
a2257f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import streamlit as st
import time
import pandas as pd
import io
from transformers import pipeline
from streamlit_extras.stylable_container import stylable_container
import plotly.express as px
import zipfile

from PyPDF2 import PdfReader
import docx


import os
from comet_ml import Experiment
import re
import numpy as np 




st.subheader("58-Italian Named Entity Recognition Web App", divider = "orange")
st.link_button("by nlpblogs", "https://nlpblogs.com", type = "tertiary")

expander = st.expander("**Important notes on the 58-Italian Named Entity Recognition Web App**")
expander.write('''
    
    **Named Entities:**
    This 58-Italian Named Entity Recognition Web App predicts fifty-eight (58) labels
    
    ("**INDIRIZZO**: Identifica un indirizzo fisico.
    
     **VALUTA**: Rappresenta una valuta.
     
     **CVV**: Codice di sicurezza della carta di credito.
     
     **NUMERO_CONTO**: Numero di un conto bancario.
     
     **BIC**: Codice identificativo di una banca (Bank Identifier Code).
     
     **IBAN**: Numero di conto bancario internazionale.
     
     **STATO**: Identifica un paese o una nazione.
     
     **NOME**: Riferito al nome di una persona.
     
     **COGNOME**: Riferito al cognome di una persona.
     
     **CODICE_POSTALE**: Codice postale di un'area geografica.
     
     **IP**: Indirizzo IP di un dispositivo in rete.
     
     **ORARIO**: Riferito a un orario specifico.
     
     **URL**: Indirizzo web (Uniform Resource Locator).
     
     **LUOGO**: Identifica un luogo geografico.
     
     **IMPORTO**: Riferito a una somma di denaro.
     
     **EMAIL**: Indirizzo di posta elettronica.
     
     **PASSWORD**: Parola chiave per l'accesso a sistemi protetti.
     
     **NUMERO_CARTA**: Numero di una carta di credito o debito.
     
     **TARGA_VEICOLO**: Numero di targa di un veicolo.
     
     **DATA_NASCITA**: Data di nascita di una persona.
     
     **DATA_MORTE**: Data di decesso di una persona.
     
     **RAGIONE_SOCIALE**: Nome legale di un'azienda o entità commerciale.
     
     **ETA**: Età di una persona.
     
     **DATA**: Riferita a una data generica.
     
     **PROFESSIONE**: Occupazione o lavoro di una persona.
     
     **PIN**: Numero di identificazione personale.
     
     **NUMERO_TELEFONO**: Numero telefonico.
     
     **FOGLIO**: Riferito a un foglio di documentazione.
     
     **PARTICELLA**: Riferito a una particella catastale.
     
     **CARTELLA_CLINICA**: Documentazione medica di un paziente.
     
     **MALATTIA**: Identifica una malattia o condizione medica.
     
     **MEDICINA**: Riferito a un farmaco o trattamento medico.
     
     **CODICE_FISCALE**: Codice fiscale personale o aziendale.
     
     **NUMERO_DOCUMENTO**: Numero di un documento ufficiale.
     
     **STORIA_CLINICA**: Registro delle condizioni mediche di un paziente.
     
     **AVV_NOTAIO**: Identifica un avvocato o notaio.
     
     **P_IVA**: Partita IVA di un'azienda o professionista.
     
     **LEGGE**: Riferito a una legge specifica.
     
     **TASSO_MUTUO**: Tasso di interesse di un mutuo.
     
     **N_SENTENZA**: Numero di una sentenza legale.
     
     **MAPPALE**: Riferito a un mappale catastale.
     
     **SUBALTERNO**: Riferito a un subalterno catastale.
     
     **REGIME_PATRIMONIALE**: Stato patrimoniale in ambito legale.
     
     **STATO_CIVILE**: Stato civile di una persona.
     
     **BANCA**: Identifica una banca o istituto di credito.
     
     **BRAND**: Marchio o brand commerciale.
     
     **NUM_ASSEGNO_BANCARIO**: Numero di un assegno bancario.
     
     **IMEI**: Numero di identificazione internazionale di un dispositivo mobile.
     
     **N_LICENZA**: Numero di una licenza specifica.
     
     **IPV6_1**: Indirizzo IP versione 6.
     
     **MAC**: Indirizzo MAC di un dispositivo di rete.
     
     **USER_AGENT**: Identifica il software usato per accedere a una rete.
     
     **TRIBUNALE**: Identifica un tribunale specifico.
     
     **STRENGTH**: Riferito alla forza o intensità di del medicinale.
     
     **FREQUENZA**: Riferito alla frequenza di un trattamento medico.
     
     **DURATION**: Durata di un evento o trattamento.
     
     **DOSAGGIO**: Quantità di un medicinale da assumere.
     
     **FORM**: Forma del medicinale, ad esempio compresse.")
     
     Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
    
    **How to Use:**
    Upload your .pdf or .docx file. Then, click the 'Results' button to extract and tag entities in your text data.
    
    **Usage Limits:**
     You can request results up to 10 times.
 
    **Customization:**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **Technical issues:**
    If your connection times out, please refresh the page or reopen the app's URL.
    
    For any errors or inquiries, please contact us at [email protected]
    
''')


with st.sidebar:
    container = st.container(border=True)
    container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
    st.subheader("Related NLP Web Apps", divider = "orange")
    st.link_button("8-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/8-named-entity-recognition-web-app/", type = "primary")


COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")

if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
    comet_initialized = True
else:
    comet_initialized = False
    st.warning("Comet ML not initialized. Check environment variables.")

    

if 'file_upload_attempts' not in st.session_state:
    st.session_state['file_upload_attempts'] = 0

max_attempts = 10


upload_file = st.file_uploader("Upload your file. Accepted file formats include: .pdf, .docx", type=['pdf', 'docx'])
text = None
df = None

if upload_file is not None:
    
    file_extension = upload_file.name.split('.')[-1].lower()
    if file_extension == 'pdf':
        try:
            pdf_reader = PdfReader(upload_file)
            text = ""
            for page in pdf_reader.pages:
                text += page.extract_text()
            st.write("Due to security protocols, the file content is hidden.")
        except Exception as e:
            st.error(f"An error occurred while reading PDF: {e}")
    elif file_extension == 'docx':
        try:
            doc = docx.Document(upload_file)
            text = "\n".join([para.text for para in doc.paragraphs])
            st.write("Due to security protocols, the file content is hidden.")
        except Exception as e:
            st.error(f"An error occurred while reading docx: {e}")
    else:
        st.warning("Unsupported file type.")
    
        st.stop()


st.divider()

if st.button("Results"):
    if st.session_state['file_upload_attempts'] >= max_attempts:
        st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
        st.stop()
    st.session_state['file_upload_attempts'] += 1
    

    with st.spinner("Wait for it...", show_time=True):
        time.sleep(5)
        model = pipeline("token-classification", model="DeepMount00/Italian_NER_XXL", aggregation_strategy = "max")
        text1 = model(text)
       
        df1 = pd.DataFrame(text1)
        pattern = r'[^\w\s]'
        df1['word'] = df1['word'].replace(pattern, '', regex=True)

        df2 = df1.replace('', 'Unknown')
        df = df2.dropna()

        
        

        

        if comet_initialized:
            experiment = Experiment(
                api_key=COMET_API_KEY,
                workspace=COMET_WORKSPACE,
                project_name=COMET_PROJECT_NAME,
            )
            experiment.log_parameter("input_text", text)
            experiment.log_table("predicted_entities", df)

        properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
        df_styled = df.style.set_properties(**properties)
        st.dataframe(df_styled)

        with st.expander("See Glossary of tags"):
            st.write('''
            '**word**': ['entity extracted from your text data']
            
            '**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
            
            '**entity_group**': ['label (tag) assigned to a given extracted entity']
            
            '**start**': ['index of the start of the corresponding entity']
            
            '**end**': ['index of the end of the corresponding entity']
            ''')

        if df is not None:
            fig = px.treemap(df, path=[px.Constant("all"), 'word', 'entity_group'],
                                 values='score', color='entity_group')
            fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
            st.subheader("Tree map", divider = "rainbow")
            st.plotly_chart(fig)
            if comet_initialized:
                experiment.log_figure(figure=fig, figure_name="entity_treemap")

        if df is not None:
            value_counts1 = df['entity_group'].value_counts()
            df1 = pd.DataFrame(value_counts1)
            final_df = df1.reset_index().rename(columns={"index": "entity_group"})
            col1, col2 = st.columns(2)
            with col1:
                fig1 = px.pie(final_df, values='count', names='entity_group', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
                fig1.update_traces(textposition='inside', textinfo='percent+label')
                st.subheader("Pie Chart", divider = "orange")
                st.plotly_chart(fig1)
                if comet_initialized:
                    experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
            with col2:
                fig2 = px.bar(final_df, x="count", y="entity_group", color="entity_group", text_auto=True, title='Occurrences of predicted labels')
                st.subheader("Bar Chart", divider = "orange")
                st.plotly_chart(fig2)
                if comet_initialized:
                    experiment.log_figure(figure=fig2, figure_name="label_bar_chart")

        dfa = pd.DataFrame(
            data={
                'word': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'entity_group': ['label (tag) assigned to a given extracted entity'],
                'start': ['index of the start of the corresponding entity'],
                'end': ['index of the end of the corresponding entity'],
                })
        buf = io.BytesIO()
        with zipfile.ZipFile(buf, "w") as myzip:
            myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
            myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
            

        with stylable_container(
            key="download_button",
            css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
        ):
            st.download_button(
                label="Download zip file",
                data=buf.getvalue(),
                file_name="zip file.zip",
                mime="application/zip",
            )
            if comet_initialized:
                experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")

        st.divider()
        if comet_initialized:
            experiment.end()
st.write(f"Number of times you requested results: {st.session_state['file_upload_attempts']}/{max_attempts}")