Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import torch.nn as nn
|
|
3 |
from transformers import AutoTokenizer, AutoModel
|
4 |
import gradio as gr
|
5 |
|
6 |
-
# Model multitask dengan token_type_ids support
|
7 |
class MultiTaskModel(nn.Module):
|
8 |
def __init__(self, base_model_name, num_topic_classes, num_sentiment_classes):
|
9 |
super(MultiTaskModel, self).__init__()
|
@@ -23,13 +22,11 @@ class MultiTaskModel(nn.Module):
|
|
23 |
sentimen_logits = self.sentiment_classifier(pooled_output)
|
24 |
return topik_logits, sentimen_logits
|
25 |
|
26 |
-
# Load tokenizer & model
|
27 |
tokenizer = AutoTokenizer.from_pretrained("tokenizer")
|
28 |
model = MultiTaskModel("indobenchmark/indobert-base-p1", num_topic_classes=5, num_sentiment_classes=3)
|
29 |
model.load_state_dict(torch.load("model.pt", map_location=torch.device("cpu")))
|
30 |
model.eval()
|
31 |
|
32 |
-
# Label mapping
|
33 |
topik_labels = ["Produk", "Layanan", "Pengiriman", "Pembatalan", "Lainnya"]
|
34 |
sentimen_labels = ["Negatif", "Netral", "Positif"]
|
35 |
|
@@ -37,12 +34,14 @@ def klasifikasi(text):
|
|
37 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
38 |
with torch.no_grad():
|
39 |
topik_logits, sentimen_logits = model(**inputs)
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
|
|
|
|
48 |
demo.launch()
|
|
|
3 |
from transformers import AutoTokenizer, AutoModel
|
4 |
import gradio as gr
|
5 |
|
|
|
6 |
class MultiTaskModel(nn.Module):
|
7 |
def __init__(self, base_model_name, num_topic_classes, num_sentiment_classes):
|
8 |
super(MultiTaskModel, self).__init__()
|
|
|
22 |
sentimen_logits = self.sentiment_classifier(pooled_output)
|
23 |
return topik_logits, sentimen_logits
|
24 |
|
|
|
25 |
tokenizer = AutoTokenizer.from_pretrained("tokenizer")
|
26 |
model = MultiTaskModel("indobenchmark/indobert-base-p1", num_topic_classes=5, num_sentiment_classes=3)
|
27 |
model.load_state_dict(torch.load("model.pt", map_location=torch.device("cpu")))
|
28 |
model.eval()
|
29 |
|
|
|
30 |
topik_labels = ["Produk", "Layanan", "Pengiriman", "Pembatalan", "Lainnya"]
|
31 |
sentimen_labels = ["Negatif", "Netral", "Positif"]
|
32 |
|
|
|
34 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
35 |
with torch.no_grad():
|
36 |
topik_logits, sentimen_logits = model(**inputs)
|
37 |
+
topik_idx = torch.argmax(topik_logits, dim=-1).item()
|
38 |
+
sentimen_idx = torch.argmax(sentimen_logits, dim=-1).item()
|
39 |
|
40 |
+
topik = topik_labels[topik_idx]
|
41 |
+
sentimen = sentimen_labels[sentimen_idx]
|
42 |
+
ringkasan = f"Pelanggan: {text}\nCS: Kami senang dapat membantu Anda."
|
43 |
|
44 |
+
return f"HASIL ANALISIS\nTopik: {topik}\nSentimen: {sentimen}\nRingkasan: {ringkasan}"
|
45 |
+
|
46 |
+
demo = gr.Interface(fn=klasifikasi, inputs="text", outputs="text", title="Klasifikasi Topik dan Sentimen Pelanggan")
|
47 |
demo.launch()
|