Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import os | |
| from datetime import datetime | |
| import random | |
| import gradio as gr | |
| from datasets import load_dataset, Dataset | |
| from huggingface_hub import whoami | |
| EXAM_DATASET_ID = ( | |
| os.getenv("EXAM_DATASET_ID") or "huggingface-course/supervised-finetuning_quiz" | |
| ) | |
| EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 10 | |
| EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.7 | |
| ds = load_dataset(EXAM_DATASET_ID, split="train") | |
| # Convert dataset to a list of dicts and randomly sort | |
| quiz_data = ds.to_pandas().to_dict("records") | |
| random.shuffle(quiz_data) | |
| # Limit to max questions if specified | |
| if EXAM_MAX_QUESTIONS: | |
| quiz_data = quiz_data[: int(EXAM_MAX_QUESTIONS)] | |
| def on_user_logged_in(token: gr.OAuthToken | None): | |
| """ | |
| If the user has a valid token, show Start button. | |
| Otherwise, keep the login button visible. | |
| """ | |
| if token is not None: | |
| return [ | |
| gr.update(visible=False), # login button visibility | |
| gr.update(visible=True), # start button visibility | |
| gr.update(visible=False), # next button visibility | |
| gr.update(visible=False), # submit button visibility | |
| "", # question text | |
| [], # radio choices (empty list = no choices) | |
| "Click 'Start' to begin the quiz", # status message | |
| 0, # question_idx | |
| [], # user_answers | |
| "", # final_markdown content | |
| token, # user token | |
| ] | |
| else: | |
| return [ | |
| gr.update(visible=True), # login button visibility | |
| gr.update(visible=False), # start button visibility | |
| gr.update(visible=False), # next button visibility | |
| gr.update(visible=False), # submit button visibility | |
| "", # question text | |
| [], # radio choices | |
| "", # status message | |
| 0, # question_idx | |
| [], # user_answers | |
| "", # final_markdown content | |
| None, # no token | |
| ] | |
| def push_results_to_hub(user_answers, token: gr.OAuthToken | None): | |
| """ | |
| Create a new dataset from user_answers and push it to the Hub. | |
| Calculates grade and checks against passing threshold. | |
| """ | |
| if token is None: | |
| gr.Warning("Please log in to Hugging Face before pushing!") | |
| return | |
| # Calculate grade | |
| correct_count = sum(1 for answer in user_answers if answer["is_correct"]) | |
| total_questions = len(user_answers) | |
| grade = correct_count / total_questions if total_questions > 0 else 0 | |
| if grade < float(EXAM_PASSING_SCORE): | |
| gr.Warning( | |
| f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}" | |
| ) | |
| return f"You scored {grade:.1%}. Please try again to achieve at least {float(EXAM_PASSING_SCORE):.1%}" | |
| gr.Info("Submitting answers to the Hub. Please wait...", duration=2) | |
| user_info = whoami(token=token.token) | |
| repo_id = f"{EXAM_DATASET_ID}_student_responses" | |
| submission_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| new_ds = Dataset.from_list(user_answers) | |
| new_ds = new_ds.map( | |
| lambda x: { | |
| "username": user_info["name"], | |
| "datetime": submission_time, | |
| "grade": grade, | |
| } | |
| ) | |
| new_ds.push_to_hub(repo_id) | |
| return f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}" | |
| def handle_quiz(question_idx, user_answers, selected_answer, is_start): | |
| """ | |
| Handle quiz state transitions and store answers | |
| """ | |
| if not is_start and question_idx < len(quiz_data): | |
| current_q = quiz_data[question_idx] | |
| correct_reference = current_q["correct_answer"] | |
| correct_reference = f"answer_{correct_reference}".lower() | |
| is_correct = selected_answer == current_q[correct_reference] | |
| user_answers.append( | |
| { | |
| "question": current_q["question"], | |
| "selected_answer": selected_answer, | |
| "correct_answer": current_q[correct_reference], | |
| "is_correct": is_correct, | |
| "correct_reference": correct_reference, | |
| } | |
| ) | |
| question_idx += 1 | |
| if question_idx >= len(quiz_data): | |
| correct_count = sum(1 for answer in user_answers if answer["is_correct"]) | |
| grade = correct_count / len(user_answers) | |
| results_text = ( | |
| f"**Quiz Complete!**\n\n" | |
| f"Your score: {grade:.1%}\n" | |
| f"Passing score: {float(EXAM_PASSING_SCORE):.1%}\n\n" | |
| ) | |
| return [ | |
| "", # question_text | |
| gr.update(choices=[], visible=False), # hide radio choices | |
| f"{'✅ Passed!' if grade >= float(EXAM_PASSING_SCORE) else '❌ Did not pass'}", | |
| question_idx, | |
| user_answers, | |
| gr.update(visible=False), # start button visibility | |
| gr.update(visible=False), # next button visibility | |
| gr.update(visible=True), # submit button visibility | |
| results_text, # final results text | |
| ] | |
| # Show next question | |
| q = quiz_data[question_idx] | |
| return [ | |
| f"## Question {question_idx + 1} \n### {q['question']}", # question text | |
| gr.update( # properly update radio choices | |
| choices=[q["answer_a"], q["answer_b"], q["answer_c"], q["answer_d"]], | |
| value=None, | |
| visible=True, | |
| ), | |
| "Select an answer and click 'Next' to continue.", | |
| question_idx, | |
| user_answers, | |
| gr.update(visible=False), # start button visibility | |
| gr.update(visible=True), # next button visibility | |
| gr.update(visible=False), # submit button visibility | |
| "", # clear final markdown | |
| ] | |
| def success_message(response): | |
| # response is whatever push_results_to_hub returned | |
| return f"{response}\n\n**Success!**" | |
| with gr.Blocks() as demo: | |
| demo.title = f"Dataset Quiz for {EXAM_DATASET_ID}" | |
| # State variables | |
| question_idx = gr.State(value=0) | |
| user_answers = gr.State(value=[]) | |
| user_token = gr.State(value=None) | |
| with gr.Row(variant="compact"): | |
| gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz") | |
| with gr.Row(variant="compact"): | |
| gr.Markdown( | |
| "Log in first, then click 'Start' to begin. Answer each question, click 'Next', and finally click 'Submit' to publish your results to the Hugging Face Hub." | |
| ) | |
| with gr.Row(variant="panel"): | |
| question_text = gr.Markdown("") | |
| radio_choices = gr.Radio( | |
| choices=[], label="Your Answer", scale=1.5, visible=False | |
| ) | |
| with gr.Row(variant="compact"): | |
| status_text = gr.Markdown("") | |
| final_markdown = gr.Markdown("") | |
| with gr.Row(variant="compact"): | |
| login_btn = gr.LoginButton(visible=True) | |
| start_btn = gr.Button("Start ⏭️", visible=True) | |
| next_btn = gr.Button("Next ⏭️", visible=False) | |
| submit_btn = gr.Button("Submit ✅", visible=False) | |
| # Wire up the event handlers | |
| login_btn.click( | |
| fn=on_user_logged_in, | |
| inputs=None, | |
| outputs=[ | |
| login_btn, | |
| start_btn, | |
| next_btn, | |
| submit_btn, | |
| question_text, | |
| radio_choices, | |
| status_text, | |
| question_idx, | |
| user_answers, | |
| final_markdown, | |
| user_token, | |
| ], | |
| ) | |
| start_btn.click( | |
| fn=handle_quiz, | |
| inputs=[question_idx, user_answers, gr.State(""), gr.State(True)], | |
| outputs=[ | |
| question_text, | |
| radio_choices, | |
| status_text, | |
| question_idx, | |
| user_answers, | |
| start_btn, | |
| next_btn, | |
| submit_btn, | |
| final_markdown, | |
| ], | |
| ) | |
| next_btn.click( | |
| fn=handle_quiz, | |
| inputs=[question_idx, user_answers, radio_choices, gr.State(False)], | |
| outputs=[ | |
| question_text, | |
| radio_choices, | |
| status_text, | |
| question_idx, | |
| user_answers, | |
| start_btn, | |
| next_btn, | |
| submit_btn, | |
| final_markdown, | |
| ], | |
| ) | |
| submit_btn.click(fn=push_results_to_hub, inputs=[user_answers]) | |
| if __name__ == "__main__": | |
| # Note: If testing locally, you'll need to run `huggingface-cli login` or set HF_TOKEN | |
| # environment variable for the login to work locally. | |
| demo.launch() | |