|
import os |
|
from datetime import datetime |
|
import random |
|
|
|
import gradio as gr |
|
from datasets import load_dataset, Dataset |
|
from huggingface_hub import whoami |
|
|
|
EXAM_DATASET_ID = ( |
|
os.getenv("EXAM_DATASET_ID") or "nlp-course/supervised-finetuning_quiz" |
|
) |
|
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 10 |
|
EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.7 |
|
|
|
ds = load_dataset(EXAM_DATASET_ID, split="train") |
|
|
|
|
|
quiz_data = ds.to_pandas().to_dict("records") |
|
random.shuffle(quiz_data) |
|
|
|
|
|
if EXAM_MAX_QUESTIONS: |
|
quiz_data = quiz_data[: int(EXAM_MAX_QUESTIONS)] |
|
|
|
|
|
def on_user_logged_in(token: gr.OAuthToken | None): |
|
""" |
|
If the user has a valid token, show Start button. |
|
Otherwise, keep the login button visible. |
|
""" |
|
if token is not None: |
|
return [ |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
"", |
|
[], |
|
"Click 'Start' to begin the quiz", |
|
0, |
|
[], |
|
"", |
|
token, |
|
] |
|
else: |
|
return [ |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
"", |
|
[], |
|
"", |
|
0, |
|
[], |
|
"", |
|
None, |
|
] |
|
|
|
|
|
def push_results_to_hub(user_answers, token: gr.OAuthToken | None): |
|
""" |
|
Create a new dataset from user_answers and push it to the Hub. |
|
Calculates grade and checks against passing threshold. |
|
""" |
|
if token is None: |
|
gr.Warning("Please log in to Hugging Face before pushing!") |
|
return |
|
|
|
|
|
correct_count = sum(1 for answer in user_answers if answer["is_correct"]) |
|
total_questions = len(user_answers) |
|
grade = correct_count / total_questions if total_questions > 0 else 0 |
|
|
|
if grade < float(EXAM_PASSING_SCORE): |
|
gr.Warning( |
|
f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}" |
|
) |
|
return f"You scored {grade:.1%}. Please try again to achieve at least {float(EXAM_PASSING_SCORE):.1%}" |
|
|
|
gr.Info("Submitting answers to the Hub. Please wait...", duration=2) |
|
|
|
user_info = whoami(token=token.token) |
|
repo_id = f"{EXAM_DATASET_ID}_student_responses" |
|
submission_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
|
|
new_ds = Dataset.from_list(user_answers) |
|
new_ds = new_ds.map( |
|
lambda x: { |
|
"username": user_info["name"], |
|
"datetime": submission_time, |
|
"grade": grade, |
|
} |
|
) |
|
new_ds.push_to_hub(repo_id) |
|
return f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}" |
|
|
|
|
|
def handle_quiz(question_idx, user_answers, selected_answer, is_start): |
|
""" |
|
Handle quiz state transitions and store answers |
|
""" |
|
if not is_start and question_idx < len(quiz_data): |
|
current_q = quiz_data[question_idx] |
|
correct_reference = current_q["correct_answer"] |
|
correct_reference = f"answer_{correct_reference}".lower() |
|
is_correct = selected_answer == current_q[correct_reference] |
|
user_answers.append( |
|
{ |
|
"question": current_q["question"], |
|
"selected_answer": selected_answer, |
|
"correct_answer": current_q[correct_reference], |
|
"is_correct": is_correct, |
|
"correct_reference": correct_reference, |
|
} |
|
) |
|
question_idx += 1 |
|
|
|
if question_idx >= len(quiz_data): |
|
correct_count = sum(1 for answer in user_answers if answer["is_correct"]) |
|
grade = correct_count / len(user_answers) |
|
results_text = ( |
|
f"**Quiz Complete!**\n\n" |
|
f"Your score: {grade:.1%}\n" |
|
f"Passing score: {float(EXAM_PASSING_SCORE):.1%}\n\n" |
|
) |
|
return [ |
|
"", |
|
gr.update(choices=[], visible=False), |
|
f"{'✅ Passed!' if grade >= float(EXAM_PASSING_SCORE) else '❌ Did not pass'}", |
|
question_idx, |
|
user_answers, |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
results_text, |
|
] |
|
|
|
|
|
q = quiz_data[question_idx] |
|
return [ |
|
f"## Question {question_idx + 1} \n### {q['question']}", |
|
gr.update( |
|
choices=[q["answer_a"], q["answer_b"], q["answer_c"], q["answer_d"]], |
|
value=None, |
|
visible=True, |
|
), |
|
"Select an answer and click 'Next' to continue.", |
|
question_idx, |
|
user_answers, |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
"", |
|
] |
|
|
|
|
|
def success_message(response): |
|
|
|
return f"{response}\n\n**Success!**" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
demo.title = f"Dataset Quiz for {EXAM_DATASET_ID}" |
|
|
|
|
|
question_idx = gr.State(value=0) |
|
user_answers = gr.State(value=[]) |
|
user_token = gr.State(value=None) |
|
|
|
with gr.Row(variant="compact"): |
|
gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz") |
|
|
|
with gr.Row(variant="compact"): |
|
gr.Markdown( |
|
"Log in first, then click 'Start' to begin. Answer each question, click 'Next', and finally click 'Submit' to publish your results to the Hugging Face Hub." |
|
) |
|
|
|
with gr.Row(variant="panel"): |
|
question_text = gr.Markdown("") |
|
radio_choices = gr.Radio( |
|
choices=[], label="Your Answer", scale=1.5, visible=False |
|
) |
|
|
|
with gr.Row(variant="compact"): |
|
status_text = gr.Markdown("") |
|
final_markdown = gr.Markdown("") |
|
|
|
with gr.Row(variant="compact"): |
|
login_btn = gr.LoginButton(visible=True) |
|
start_btn = gr.Button("Start ⏭️", visible=True) |
|
next_btn = gr.Button("Next ⏭️", visible=False) |
|
submit_btn = gr.Button("Submit ✅", visible=False) |
|
|
|
|
|
login_btn.click( |
|
fn=on_user_logged_in, |
|
inputs=None, |
|
outputs=[ |
|
login_btn, |
|
start_btn, |
|
next_btn, |
|
submit_btn, |
|
question_text, |
|
radio_choices, |
|
status_text, |
|
question_idx, |
|
user_answers, |
|
final_markdown, |
|
user_token, |
|
], |
|
) |
|
|
|
start_btn.click( |
|
fn=handle_quiz, |
|
inputs=[question_idx, user_answers, gr.State(""), gr.State(True)], |
|
outputs=[ |
|
question_text, |
|
radio_choices, |
|
status_text, |
|
question_idx, |
|
user_answers, |
|
start_btn, |
|
next_btn, |
|
submit_btn, |
|
final_markdown, |
|
], |
|
) |
|
|
|
next_btn.click( |
|
fn=handle_quiz, |
|
inputs=[question_idx, user_answers, radio_choices, gr.State(False)], |
|
outputs=[ |
|
question_text, |
|
radio_choices, |
|
status_text, |
|
question_idx, |
|
user_answers, |
|
start_btn, |
|
next_btn, |
|
submit_btn, |
|
final_markdown, |
|
], |
|
) |
|
|
|
submit_btn.click(fn=push_results_to_hub, inputs=[user_answers]) |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
demo.launch() |
|
|