burtenshaw
update application with latest logic from parent
c0d911e
import os
from datetime import datetime
import random
import gradio as gr
from datasets import load_dataset, Dataset
from huggingface_hub import whoami
EXAM_DATASET_ID = (
os.getenv("EXAM_DATASET_ID") or "nlp-course/supervised-finetuning_quiz"
)
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 10
EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.7
ds = load_dataset(EXAM_DATASET_ID, split="train")
# Convert dataset to a list of dicts and randomly sort
quiz_data = ds.to_pandas().to_dict("records")
random.shuffle(quiz_data)
# Limit to max questions if specified
if EXAM_MAX_QUESTIONS:
quiz_data = quiz_data[: int(EXAM_MAX_QUESTIONS)]
def on_user_logged_in(token: gr.OAuthToken | None):
"""
If the user has a valid token, show Start button.
Otherwise, keep the login button visible.
"""
if token is not None:
return [
gr.update(visible=False), # login button visibility
gr.update(visible=True), # start button visibility
gr.update(visible=False), # next button visibility
gr.update(visible=False), # submit button visibility
"", # question text
[], # radio choices (empty list = no choices)
"Click 'Start' to begin the quiz", # status message
0, # question_idx
[], # user_answers
"", # final_markdown content
token, # user token
]
else:
return [
gr.update(visible=True), # login button visibility
gr.update(visible=False), # start button visibility
gr.update(visible=False), # next button visibility
gr.update(visible=False), # submit button visibility
"", # question text
[], # radio choices
"", # status message
0, # question_idx
[], # user_answers
"", # final_markdown content
None, # no token
]
def push_results_to_hub(user_answers, token: gr.OAuthToken | None):
"""
Create a new dataset from user_answers and push it to the Hub.
Calculates grade and checks against passing threshold.
"""
if token is None:
gr.Warning("Please log in to Hugging Face before pushing!")
return
# Calculate grade
correct_count = sum(1 for answer in user_answers if answer["is_correct"])
total_questions = len(user_answers)
grade = correct_count / total_questions if total_questions > 0 else 0
if grade < float(EXAM_PASSING_SCORE):
gr.Warning(
f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}"
)
return f"You scored {grade:.1%}. Please try again to achieve at least {float(EXAM_PASSING_SCORE):.1%}"
gr.Info("Submitting answers to the Hub. Please wait...", duration=2)
user_info = whoami(token=token.token)
repo_id = f"{EXAM_DATASET_ID}_student_responses"
submission_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_ds = Dataset.from_list(user_answers)
new_ds = new_ds.map(
lambda x: {
"username": user_info["name"],
"datetime": submission_time,
"grade": grade,
}
)
new_ds.push_to_hub(repo_id)
return f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}"
def handle_quiz(question_idx, user_answers, selected_answer, is_start):
"""
Handle quiz state transitions and store answers
"""
if not is_start and question_idx < len(quiz_data):
current_q = quiz_data[question_idx]
correct_reference = current_q["correct_answer"]
correct_reference = f"answer_{correct_reference}".lower()
is_correct = selected_answer == current_q[correct_reference]
user_answers.append(
{
"question": current_q["question"],
"selected_answer": selected_answer,
"correct_answer": current_q[correct_reference],
"is_correct": is_correct,
"correct_reference": correct_reference,
}
)
question_idx += 1
if question_idx >= len(quiz_data):
correct_count = sum(1 for answer in user_answers if answer["is_correct"])
grade = correct_count / len(user_answers)
results_text = (
f"**Quiz Complete!**\n\n"
f"Your score: {grade:.1%}\n"
f"Passing score: {float(EXAM_PASSING_SCORE):.1%}\n\n"
)
return [
"", # question_text
gr.update(choices=[], visible=False), # hide radio choices
f"{'✅ Passed!' if grade >= float(EXAM_PASSING_SCORE) else '❌ Did not pass'}",
question_idx,
user_answers,
gr.update(visible=False), # start button visibility
gr.update(visible=False), # next button visibility
gr.update(visible=True), # submit button visibility
results_text, # final results text
]
# Show next question
q = quiz_data[question_idx]
return [
f"## Question {question_idx + 1} \n### {q['question']}", # question text
gr.update( # properly update radio choices
choices=[q["answer_a"], q["answer_b"], q["answer_c"], q["answer_d"]],
value=None,
visible=True,
),
"Select an answer and click 'Next' to continue.",
question_idx,
user_answers,
gr.update(visible=False), # start button visibility
gr.update(visible=True), # next button visibility
gr.update(visible=False), # submit button visibility
"", # clear final markdown
]
def success_message(response):
# response is whatever push_results_to_hub returned
return f"{response}\n\n**Success!**"
with gr.Blocks() as demo:
demo.title = f"Dataset Quiz for {EXAM_DATASET_ID}"
# State variables
question_idx = gr.State(value=0)
user_answers = gr.State(value=[])
user_token = gr.State(value=None)
with gr.Row(variant="compact"):
gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz")
with gr.Row(variant="compact"):
gr.Markdown(
"Log in first, then click 'Start' to begin. Answer each question, click 'Next', and finally click 'Submit' to publish your results to the Hugging Face Hub."
)
with gr.Row(variant="panel"):
question_text = gr.Markdown("")
radio_choices = gr.Radio(
choices=[], label="Your Answer", scale=1.5, visible=False
)
with gr.Row(variant="compact"):
status_text = gr.Markdown("")
final_markdown = gr.Markdown("")
with gr.Row(variant="compact"):
login_btn = gr.LoginButton(visible=True)
start_btn = gr.Button("Start ⏭️", visible=True)
next_btn = gr.Button("Next ⏭️", visible=False)
submit_btn = gr.Button("Submit ✅", visible=False)
# Wire up the event handlers
login_btn.click(
fn=on_user_logged_in,
inputs=None,
outputs=[
login_btn,
start_btn,
next_btn,
submit_btn,
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
final_markdown,
user_token,
],
)
start_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, gr.State(""), gr.State(True)],
outputs=[
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
start_btn,
next_btn,
submit_btn,
final_markdown,
],
)
next_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, radio_choices, gr.State(False)],
outputs=[
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
start_btn,
next_btn,
submit_btn,
final_markdown,
],
)
submit_btn.click(fn=push_results_to_hub, inputs=[user_answers])
if __name__ == "__main__":
# Note: If testing locally, you'll need to run `huggingface-cli login` or set HF_TOKEN
# environment variable for the login to work locally.
demo.launch()