File size: 8,398 Bytes
31157e8 1258179 d5f098f 31157e8 c0d911e d5f098f 31157e8 d5f098f 31157e8 c0d911e 31157e8 c0d911e 31157e8 c0d911e 31157e8 d5f098f 31157e8 d5f098f 1258179 31157e8 d5f098f 1258179 31157e8 1258179 d5f098f 1258179 31157e8 d5f098f 31157e8 c0d911e 31157e8 c0d911e 31157e8 d5f098f c0d911e d5f098f 31157e8 c0d911e 31157e8 c0d911e 31157e8 c0d911e 31157e8 1cb2d7e c0d911e 1cb2d7e c0d911e 1cb2d7e c0d911e 1cb2d7e c0d911e 1cb2d7e c0d911e 31157e8 c0d911e 31157e8 c0d911e 31157e8 c0d911e 31157e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
from datetime import datetime
import random
import gradio as gr
from datasets import load_dataset, Dataset
from huggingface_hub import whoami
EXAM_DATASET_ID = (
os.getenv("EXAM_DATASET_ID") or "nlp-course/supervised-finetuning_quiz"
)
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 10
EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.7
ds = load_dataset(EXAM_DATASET_ID, split="train")
# Convert dataset to a list of dicts and randomly sort
quiz_data = ds.to_pandas().to_dict("records")
random.shuffle(quiz_data)
# Limit to max questions if specified
if EXAM_MAX_QUESTIONS:
quiz_data = quiz_data[: int(EXAM_MAX_QUESTIONS)]
def on_user_logged_in(token: gr.OAuthToken | None):
"""
If the user has a valid token, show Start button.
Otherwise, keep the login button visible.
"""
if token is not None:
return [
gr.update(visible=False), # login button visibility
gr.update(visible=True), # start button visibility
gr.update(visible=False), # next button visibility
gr.update(visible=False), # submit button visibility
"", # question text
[], # radio choices (empty list = no choices)
"Click 'Start' to begin the quiz", # status message
0, # question_idx
[], # user_answers
"", # final_markdown content
token, # user token
]
else:
return [
gr.update(visible=True), # login button visibility
gr.update(visible=False), # start button visibility
gr.update(visible=False), # next button visibility
gr.update(visible=False), # submit button visibility
"", # question text
[], # radio choices
"", # status message
0, # question_idx
[], # user_answers
"", # final_markdown content
None, # no token
]
def push_results_to_hub(user_answers, token: gr.OAuthToken | None):
"""
Create a new dataset from user_answers and push it to the Hub.
Calculates grade and checks against passing threshold.
"""
if token is None:
gr.Warning("Please log in to Hugging Face before pushing!")
return
# Calculate grade
correct_count = sum(1 for answer in user_answers if answer["is_correct"])
total_questions = len(user_answers)
grade = correct_count / total_questions if total_questions > 0 else 0
if grade < float(EXAM_PASSING_SCORE):
gr.Warning(
f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}"
)
return f"You scored {grade:.1%}. Please try again to achieve at least {float(EXAM_PASSING_SCORE):.1%}"
gr.Info("Submitting answers to the Hub. Please wait...", duration=2)
user_info = whoami(token=token.token)
repo_id = f"{EXAM_DATASET_ID}_student_responses"
submission_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_ds = Dataset.from_list(user_answers)
new_ds = new_ds.map(
lambda x: {
"username": user_info["name"],
"datetime": submission_time,
"grade": grade,
}
)
new_ds.push_to_hub(repo_id)
return f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}"
def handle_quiz(question_idx, user_answers, selected_answer, is_start):
"""
Handle quiz state transitions and store answers
"""
if not is_start and question_idx < len(quiz_data):
current_q = quiz_data[question_idx]
correct_reference = current_q["correct_answer"]
correct_reference = f"answer_{correct_reference}".lower()
is_correct = selected_answer == current_q[correct_reference]
user_answers.append(
{
"question": current_q["question"],
"selected_answer": selected_answer,
"correct_answer": current_q[correct_reference],
"is_correct": is_correct,
"correct_reference": correct_reference,
}
)
question_idx += 1
if question_idx >= len(quiz_data):
correct_count = sum(1 for answer in user_answers if answer["is_correct"])
grade = correct_count / len(user_answers)
results_text = (
f"**Quiz Complete!**\n\n"
f"Your score: {grade:.1%}\n"
f"Passing score: {float(EXAM_PASSING_SCORE):.1%}\n\n"
)
return [
"", # question_text
gr.update(choices=[], visible=False), # hide radio choices
f"{'✅ Passed!' if grade >= float(EXAM_PASSING_SCORE) else '❌ Did not pass'}",
question_idx,
user_answers,
gr.update(visible=False), # start button visibility
gr.update(visible=False), # next button visibility
gr.update(visible=True), # submit button visibility
results_text, # final results text
]
# Show next question
q = quiz_data[question_idx]
return [
f"## Question {question_idx + 1} \n### {q['question']}", # question text
gr.update( # properly update radio choices
choices=[q["answer_a"], q["answer_b"], q["answer_c"], q["answer_d"]],
value=None,
visible=True,
),
"Select an answer and click 'Next' to continue.",
question_idx,
user_answers,
gr.update(visible=False), # start button visibility
gr.update(visible=True), # next button visibility
gr.update(visible=False), # submit button visibility
"", # clear final markdown
]
def success_message(response):
# response is whatever push_results_to_hub returned
return f"{response}\n\n**Success!**"
with gr.Blocks() as demo:
demo.title = f"Dataset Quiz for {EXAM_DATASET_ID}"
# State variables
question_idx = gr.State(value=0)
user_answers = gr.State(value=[])
user_token = gr.State(value=None)
with gr.Row(variant="compact"):
gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz")
with gr.Row(variant="compact"):
gr.Markdown(
"Log in first, then click 'Start' to begin. Answer each question, click 'Next', and finally click 'Submit' to publish your results to the Hugging Face Hub."
)
with gr.Row(variant="panel"):
question_text = gr.Markdown("")
radio_choices = gr.Radio(
choices=[], label="Your Answer", scale=1.5, visible=False
)
with gr.Row(variant="compact"):
status_text = gr.Markdown("")
final_markdown = gr.Markdown("")
with gr.Row(variant="compact"):
login_btn = gr.LoginButton(visible=True)
start_btn = gr.Button("Start ⏭️", visible=True)
next_btn = gr.Button("Next ⏭️", visible=False)
submit_btn = gr.Button("Submit ✅", visible=False)
# Wire up the event handlers
login_btn.click(
fn=on_user_logged_in,
inputs=None,
outputs=[
login_btn,
start_btn,
next_btn,
submit_btn,
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
final_markdown,
user_token,
],
)
start_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, gr.State(""), gr.State(True)],
outputs=[
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
start_btn,
next_btn,
submit_btn,
final_markdown,
],
)
next_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, radio_choices, gr.State(False)],
outputs=[
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
start_btn,
next_btn,
submit_btn,
final_markdown,
],
)
submit_btn.click(fn=push_results_to_hub, inputs=[user_answers])
if __name__ == "__main__":
# Note: If testing locally, you'll need to run `huggingface-cli login` or set HF_TOKEN
# environment variable for the login to work locally.
demo.launch()
|