File size: 5,764 Bytes
80f5255 2d45773 4daa7b9 2d45773 297d1e5 857662e 297d1e5 2d45773 4daa7b9 297d1e5 2d45773 857662e 297d1e5 9de6643 297d1e5 0cfb3b7 297d1e5 d96e864 297d1e5 2d45773 0cfb3b7 2d45773 297d1e5 2d45773 297d1e5 2d45773 0cfb3b7 2d45773 297d1e5 2d45773 297d1e5 2d45773 297d1e5 2d45773 297d1e5 2d45773 0cfb3b7 4daa7b9 0cfb3b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import io
import torch
import gradio as gr
import wikipediaapi
import re
import inflect
import soundfile as sf
import unicodedata
import num2words
import requests
import json
from PIL import Image
from num2words import num2words
from google.cloud import vision
from datasets import load_dataset
from scipy.io.wavfile import write
from transformers import VitsModel, AutoTokenizer
from transformers import pipeline
from transformers import CLIPProcessor, CLIPModel
from transformers import T5ForConditionalGeneration, T5Tokenizer
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
def load_attractions_json(url):
response = requests.get(url)
response.raise_for_status()
json_text = response.text
data = json.loads(json_text)
return data
url = "https://raw.githubusercontent.com/nktssk/tourist-helper/refs/heads/main/landmarks.json"
landmark_titles = load_attractions_json(url)
print(landmark_titles)
# HELPERS
def clean_text(text):
text = re.sub(r'МФА:?\s?\[.*?\]', '', text)
text = re.sub(r'\[.*?\]', '', text)
def remove_diacritics(char):
if unicodedata.category(char) == 'Mn':
return ''
return char
text = unicodedata.normalize('NFD', text)
text = ''.join(remove_diacritics(char) for char in text)
text = unicodedata.normalize('NFC', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[^\w\s.,!?-]', '', text)
return text.strip()
def replace_numbers_with_text(input_string):
def convert_number(match):
number = match.group(0)
try:
return num2words(float(number) if '.' in number else int(number), lang='ru')
except Exception:
return number
return re.sub(r'\d+(\.\d+)?', convert_number, input_string)
# MODELS
summarization_model = pipeline("summarization", model="facebook/bart-large-cnn")
wiki = wikipediaapi.Wikipedia("Nikita", "en")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
t2s_pipe = pipeline("text-to-speech", model="facebook/mms-tts-rus")
translator = pipeline("translation_en_to_ru", model="Helsinki-NLP/opus-mt-en-ru")
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
text_inputs = clip_processor(
text=landmark_titles,
images=None,
return_tensors="pt",
padding=True
)
with torch.no_grad():
text_embeds = clip_model.get_text_features(**text_inputs)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# TEXT-TO-SPEECH
def text_to_speech(text, output_path="speech.wav"):
text = replace_numbers_with_text(text)
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus")
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
output = model(**inputs).waveform.squeeze().numpy()
sf.write(output_path, output, samplerate=model.config.sampling_rate)
return output_path
# WIKI
def fetch_wikipedia_summary(landmark):
page = wiki.page(landmark)
if page.exists():
return clean_text(page.summary)
else:
return "Found error!"
# CLIP
def recognize_landmark_clip(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
image_inputs = clip_processor(images=image, return_tensors="pt")
with torch.no_grad():
image_embed = clip_model.get_image_features(**image_inputs)
image_embed = image_embed / image_embed.norm(p=2, dim=-1, keepdim=True)
similarity = (image_embed @ text_embeds.T).squeeze(0)
best_idx = similarity.argmax().item()
best_score = similarity[best_idx].item()
recognized_landmark = landmark_titles[best_idx]
return recognized_landmark, best_score
# DEMO
def tourist_helper_with_russian(landmark):
wiki_text = fetch_wikipedia_summary(landmark)
if wiki_text == "Found error!":
return None
print(wiki_text)
summarized_text = summarization_model(wiki_text, min_length=20, max_length=210)[0]["summary_text"]
print(summarized_text)
translated = translator(summarized_text, max_length=1000)[0]["translation_text"]
print(translated)
audio_path = text_to_speech(translated)
return audio_path
def process_image_clip(image):
recognized, score = recognize_landmark_clip(image)
print(f"[CLIP] Распознано: {recognized}, score={score:.2f}")
audio_path = tourist_helper_with_russian(recognized)
return audio_path
def process_text_clip(landmark):
return tourist_helper_with_russian(landmark)
with gr.Blocks() as demo:
gr.Markdown("## Помощь туристу")
with gr.Tabs():
with gr.Tab("CLIP + Sum + Translate + T2S"):
gr.Markdown("### Распознавание (CLIP) и перевод на русский")
with gr.Row():
image_input_c = gr.Image(label="Загрузите фото", type="pil")
text_input_c = gr.Textbox(label="Или введите название")
audio_output_c = gr.Audio(label="Результатт")
with gr.Row():
btn_recognize_c = gr.Button("Распознать и перевести на русский")
btn_text_c = gr.Button("Поиск по тексту")
btn_recognize_c.click(
fn=process_image_clip,
inputs=image_input_c,
outputs=audio_output_c
)
btn_text_c.click(
fn=process_text_clip,
inputs=text_input_c,
outputs=audio_output_c
)
demo.launch(debug=True)
|