File size: 5,764 Bytes
80f5255
2d45773
4daa7b9
2d45773
 
 
 
 
 
 
297d1e5
 
857662e
297d1e5
 
2d45773
 
 
4daa7b9
297d1e5
2d45773
 
857662e
297d1e5
 
 
 
 
 
9de6643
297d1e5
 
0cfb3b7
297d1e5
d96e864
297d1e5
2d45773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfb3b7
 
 
 
 
 
 
 
2d45773
297d1e5
2d45773
 
 
 
 
 
297d1e5
 
 
 
 
 
 
 
 
 
 
 
 
 
2d45773
0cfb3b7
2d45773
 
 
 
 
 
 
 
 
 
 
 
297d1e5
2d45773
 
 
 
 
 
 
297d1e5
2d45773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297d1e5
2d45773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297d1e5
2d45773
 
0cfb3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4daa7b9
0cfb3b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import io
import torch
import gradio as gr
import wikipediaapi
import re
import inflect
import soundfile as sf
import unicodedata
import num2words
import requests
import json
from PIL import Image
from num2words import num2words
from google.cloud import vision
from datasets import load_dataset
from scipy.io.wavfile import write
from transformers import VitsModel, AutoTokenizer
from transformers import pipeline
from transformers import CLIPProcessor, CLIPModel
from transformers import T5ForConditionalGeneration, T5Tokenizer
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan

def load_attractions_json(url):
    response = requests.get(url)
    response.raise_for_status()
    json_text = response.text
    data = json.loads(json_text)
    return data

url = "https://raw.githubusercontent.com/nktssk/tourist-helper/refs/heads/main/landmarks.json"  
landmark_titles = load_attractions_json(url)

print(landmark_titles)

# HELPERS
def clean_text(text):
    text = re.sub(r'МФА:?\s?\[.*?\]', '', text)
    text = re.sub(r'\[.*?\]', '', text)

    def remove_diacritics(char):
        if unicodedata.category(char) == 'Mn':
            return ''
        return char

    text = unicodedata.normalize('NFD', text)
    text = ''.join(remove_diacritics(char) for char in text)
    text = unicodedata.normalize('NFC', text)

    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'[^\w\s.,!?-]', '', text)

    return text.strip()

def replace_numbers_with_text(input_string):
    def convert_number(match):
        number = match.group(0)
        try:
            return num2words(float(number) if '.' in number else int(number), lang='ru')
        except Exception:
            return number
    return re.sub(r'\d+(\.\d+)?', convert_number, input_string)

# MODELS
summarization_model = pipeline("summarization", model="facebook/bart-large-cnn")
wiki = wikipediaapi.Wikipedia("Nikita", "en")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
t2s_pipe = pipeline("text-to-speech", model="facebook/mms-tts-rus")
translator = pipeline("translation_en_to_ru", model="Helsinki-NLP/opus-mt-en-ru")

clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

text_inputs = clip_processor(
    text=landmark_titles,
    images=None,
    return_tensors="pt",
    padding=True
)
with torch.no_grad():
    text_embeds = clip_model.get_text_features(**text_inputs)
    text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)

# TEXT-TO-SPEECH
def text_to_speech(text, output_path="speech.wav"):
  text = replace_numbers_with_text(text)
  model = VitsModel.from_pretrained("facebook/mms-tts-rus")
  tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus")

  inputs = tokenizer(text, return_tensors="pt")

  with torch.no_grad():
      output = model(**inputs).waveform.squeeze().numpy()

  sf.write(output_path, output, samplerate=model.config.sampling_rate)

  return output_path

# WIKI
def fetch_wikipedia_summary(landmark):
    page = wiki.page(landmark)
    if page.exists():
        return clean_text(page.summary)
    else:
        return "Found error!"

# CLIP
def recognize_landmark_clip(image):
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)

    image_inputs = clip_processor(images=image, return_tensors="pt")
    with torch.no_grad():
        image_embed = clip_model.get_image_features(**image_inputs)
        image_embed = image_embed / image_embed.norm(p=2, dim=-1, keepdim=True)

    similarity = (image_embed @ text_embeds.T).squeeze(0)
    best_idx = similarity.argmax().item()
    best_score = similarity[best_idx].item()
    recognized_landmark = landmark_titles[best_idx]
    return recognized_landmark, best_score

# DEMO
def tourist_helper_with_russian(landmark):
    wiki_text = fetch_wikipedia_summary(landmark)
    if wiki_text == "Found error!":
        return None

    print(wiki_text)
    summarized_text = summarization_model(wiki_text, min_length=20, max_length=210)[0]["summary_text"]
    print(summarized_text)

    translated = translator(summarized_text, max_length=1000)[0]["translation_text"]
    print(translated)
    
    audio_path = text_to_speech(translated)
    return audio_path

def process_image_clip(image):
    recognized, score = recognize_landmark_clip(image)
    print(f"[CLIP] Распознано: {recognized}, score={score:.2f}")
    audio_path = tourist_helper_with_russian(recognized)
    return audio_path

def process_text_clip(landmark):
    return tourist_helper_with_russian(landmark)

with gr.Blocks() as demo:
    gr.Markdown("## Помощь туристу")

    with gr.Tabs():
        with gr.Tab("CLIP + Sum + Translate + T2S"):
            gr.Markdown("### Распознавание (CLIP) и перевод на русский")

            with gr.Row():
                image_input_c = gr.Image(label="Загрузите фото", type="pil")
                text_input_c = gr.Textbox(label="Или введите название")

            audio_output_c = gr.Audio(label="Результатт")

            with gr.Row():
                btn_recognize_c = gr.Button("Распознать и перевести на русский")
                btn_text_c = gr.Button("Поиск по тексту")

            btn_recognize_c.click(
                fn=process_image_clip,
                inputs=image_input_c,
                outputs=audio_output_c
            )
            btn_text_c.click(
                fn=process_text_clip,
                inputs=text_input_c,
                outputs=audio_output_c
            )

demo.launch(debug=True)