Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
+
|
| 7 |
+
# Load the model from Hugging Face
|
| 8 |
+
MODEL_PATH = "https://huggingface.co/nivashuggingface/digit-recognition/resolve/main/saved_model"
|
| 9 |
+
model = tf.saved_model.load(MODEL_PATH)
|
| 10 |
+
|
| 11 |
+
def preprocess_image(img):
|
| 12 |
+
"""Preprocess the drawn image for prediction"""
|
| 13 |
+
# Convert to grayscale and resize
|
| 14 |
+
img = img.convert('L')
|
| 15 |
+
img = img.resize((28, 28))
|
| 16 |
+
# Convert to numpy array and normalize
|
| 17 |
+
img_array = np.array(img)
|
| 18 |
+
img_array = img_array.astype('float32') / 255.0
|
| 19 |
+
# Add batch dimension
|
| 20 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 21 |
+
# Add channel dimension
|
| 22 |
+
img_array = np.expand_dims(img_array, axis=-1)
|
| 23 |
+
return img_array
|
| 24 |
+
|
| 25 |
+
def predict_digit(img):
|
| 26 |
+
"""Predict digit from drawn image"""
|
| 27 |
+
try:
|
| 28 |
+
# Preprocess the image
|
| 29 |
+
processed_img = preprocess_image(img)
|
| 30 |
+
# Make prediction
|
| 31 |
+
predictions = model(processed_img)
|
| 32 |
+
predicted_digit = tf.argmax(predictions, axis=1).numpy()[0]
|
| 33 |
+
# Get confidence scores
|
| 34 |
+
confidence_scores = tf.nn.softmax(predictions[0]).numpy()
|
| 35 |
+
# Create result string
|
| 36 |
+
result = f"Predicted Digit: {predicted_digit}\n\nConfidence Scores:\n"
|
| 37 |
+
for i, score in enumerate(confidence_scores):
|
| 38 |
+
result += f"Digit {i}: {score:.2%}\n"
|
| 39 |
+
return result
|
| 40 |
+
except Exception as e:
|
| 41 |
+
return f"Error during prediction: {str(e)}"
|
| 42 |
+
|
| 43 |
+
# Create Gradio interface
|
| 44 |
+
iface = gr.Interface(
|
| 45 |
+
fn=predict_digit,
|
| 46 |
+
inputs=gr.Image(type="pil", label="Draw a digit (0-9)"),
|
| 47 |
+
outputs=gr.Textbox(label="Prediction Results"),
|
| 48 |
+
title="Digit Recognition with CNN",
|
| 49 |
+
description="""
|
| 50 |
+
Draw a digit (0-9) in the box below. The model will predict which digit you drew.
|
| 51 |
+
|
| 52 |
+
Instructions:
|
| 53 |
+
1. Click and drag to draw a digit
|
| 54 |
+
2. Make sure the digit is clear and centered
|
| 55 |
+
3. The model will show the predicted digit and confidence scores
|
| 56 |
+
""",
|
| 57 |
+
examples=[
|
| 58 |
+
["examples/0.png"],
|
| 59 |
+
["examples/1.png"],
|
| 60 |
+
["examples/2.png"],
|
| 61 |
+
],
|
| 62 |
+
theme=gr.themes.Soft(),
|
| 63 |
+
allow_flagging="never"
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Launch the interface
|
| 67 |
+
if __name__ == "__main__":
|
| 68 |
+
iface.launch()
|