import streamlit as st def main(): st.title("Amazon Title Suggestion") if "title" not in st.session_state: st.session_state.title = "" if "ner_dict" not in st.session_state: st.session_state.ner_dict = {} if "selected_keywords" not in st.session_state: st.session_state.selected_keywords = [] if "submitted_title" not in st.session_state: st.session_state.submitted_title = False if "submitted_ner_keywords" not in st.session_state: st.session_state.submitted_ner_keywords = False if not st.session_state.submitted_title: submit_title() elif st.session_state.submitted_title and not st.session_state.submitted_ner_keywords: submit_ner_keywords() import requests # def query(payload): # response = requests.post(API_URL, headers=headers, json=payload) # return response.json() from transformers import pipeline pipe = pipeline("text-generation", model="shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0") def ner_title(title): # Define the roles and markers B_SYS, E_SYS = "<>", "<>" B_INST, E_INST = "[INST]", "[/INST]" B_in, E_in = "[Title]", "[/Title]" # Format your prompt template prompt = f"""{B_INST} {B_SYS} You are a helpful assistant that provides accurate and concise responses. {E_SYS}\nExtract named entities from the given product title. Provide the output in JSON format.\n{B_in} {title.strip()} {E_in}\n{E_INST}\n\n### NER Response:\n{{"{title.split()[0].lower()}""" # output = query({ # "inputs": prompt, # }) return eval(pipe(text)[0]["generated_text"].split("### NER Response:\n")[-1]) #return(eval(output[0]['generated_text'].split("### NER Response:\n")[-1])) # def ner_title(title): # word_list = title.split() # indexed_dict = {index: word for index, word in enumerate(word_list)} # return indexed_dict def submit_title(): title = st.text_input("Enter Product Title:") if st.button("Submit Title"): st.session_state.title = title ner = ner_title(title) st.session_state.submitted_title = True st.session_state.ner_dict = ner def submit_ner_keywords(): st.subheader("Product Features:") selected_features = [] for key, value in st.session_state.ner_dict.items(): if st.checkbox(f"{key}: {value}"): selected_features.append(value) st.subheader("Select Search Terms:") keyword_list = ['a','b','c','f','g',"Feature", "Price", "Quality", "Availability"] for keyword in keyword_list: st.checkbox(keyword, key=keyword) if st.button("Suggest Titles"): model2_keywords = [keyword for keyword in keyword_list if st.session_state[keyword]] st.session_state.selected_keywords = model2_keywords st.session_state.submitted_ner_keywords = True st.write("Selected Keywords for Model2:", model2_keywords) st.write("Selected features for Model2:", selected_features) if st.button("Reset"): st.session_state.title = "" st.session_state.submitted_title = False st.session_state.submitted_ner_keywords = False # Reset selected keywords for keyword in keyword_list: st.session_state[keyword] = False # Rerun the app st.experimental_rerun() if __name__ == "__main__": main()