Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,14 +21,18 @@ def main():
|
|
| 21 |
import requests
|
| 22 |
|
| 23 |
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
# def query(payload):
|
| 26 |
-
# response = requests.post(API_URL, headers=headers, json=payload)
|
| 27 |
-
# return response.json()
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
|
|
@@ -39,12 +43,12 @@ def ner_title(title):
|
|
| 39 |
B_in, E_in = "[Title]", "[/Title]"
|
| 40 |
# Format your prompt template
|
| 41 |
prompt = f"""{B_INST} {B_SYS} You are a helpful assistant that provides accurate and concise responses. {E_SYS}\nExtract named entities from the given product title. Provide the output in JSON format.\n{B_in} {title.strip()} {E_in}\n{E_INST}\n\n### NER Response:\n{{"{title.split()[0].lower()}"""
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
|
| 46 |
-
return eval(pipe(text)[0]["generated_text"].split("### NER Response:\n")[-1])
|
| 47 |
-
|
| 48 |
# def ner_title(title):
|
| 49 |
# word_list = title.split()
|
| 50 |
# indexed_dict = {index: word for index, word in enumerate(word_list)}
|
|
|
|
| 21 |
import requests
|
| 22 |
|
| 23 |
|
| 24 |
+
API_URL = "https://api-inference.huggingface.co/models/shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0"
|
| 25 |
+
TOKEN = os.environ.get("HUGGING_FACE_TOKEN")
|
| 26 |
+
headers = {"Authorization": f"Bearer {TOKEN}"}
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
def query(payload):
|
| 30 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 31 |
+
return response.json()
|
| 32 |
|
| 33 |
+
# from transformers import pipeline
|
| 34 |
+
|
| 35 |
+
# pipe = pipeline("text-generation", model="shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0")
|
| 36 |
|
| 37 |
|
| 38 |
|
|
|
|
| 43 |
B_in, E_in = "[Title]", "[/Title]"
|
| 44 |
# Format your prompt template
|
| 45 |
prompt = f"""{B_INST} {B_SYS} You are a helpful assistant that provides accurate and concise responses. {E_SYS}\nExtract named entities from the given product title. Provide the output in JSON format.\n{B_in} {title.strip()} {E_in}\n{E_INST}\n\n### NER Response:\n{{"{title.split()[0].lower()}"""
|
| 46 |
+
output = query({
|
| 47 |
+
"inputs": prompt,
|
| 48 |
+
})
|
| 49 |
|
| 50 |
+
#return eval(pipe(text)[0]["generated_text"].split("### NER Response:\n")[-1])
|
| 51 |
+
return(eval(output[0]['generated_text'].split("### NER Response:\n")[-1]))
|
| 52 |
# def ner_title(title):
|
| 53 |
# word_list = title.split()
|
| 54 |
# indexed_dict = {index: word for index, word in enumerate(word_list)}
|