nitinbhayana commited on
Commit
3bc5038
·
verified ·
1 Parent(s): 1e4768c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -14
app.py CHANGED
@@ -19,20 +19,20 @@ def main():
19
  submit_ner_keywords()
20
 
21
  import requests
22
- import os
23
 
24
- API_URL = "https://api-inference.huggingface.co/models/shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0"
25
- TOKEN = os.environ.get("HUGGING_FACE_TOKEN")
26
- headers = {"Authorization": f"Bearer {TOKEN}"}
27
 
28
 
29
- def query(payload):
30
- response = requests.post(API_URL, headers=headers, json=payload)
31
- return response.json()
32
 
33
- # from transformers import pipeline
34
 
35
- # pipe = pipeline("text-generation", model="shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0")
36
 
37
 
38
 
@@ -43,12 +43,12 @@ def ner_title(title):
43
  B_in, E_in = "[Title]", "[/Title]"
44
  # Format your prompt template
45
  prompt = f"""{B_INST} {B_SYS} You are a helpful assistant that provides accurate and concise responses. {E_SYS}\nExtract named entities from the given product title. Provide the output in JSON format.\n{B_in} {title.strip()} {E_in}\n{E_INST}\n\n### NER Response:\n{{"{title.split()[0].lower()}"""
46
- output = query({
47
- "inputs": prompt,
48
- })
49
 
50
- #return eval(pipe(text)[0]["generated_text"].split("### NER Response:\n")[-1])
51
- return(eval(output[0]['generated_text'].split("### NER Response:\n")[-1]))
52
  # def ner_title(title):
53
  # word_list = title.split()
54
  # indexed_dict = {index: word for index, word in enumerate(word_list)}
 
19
  submit_ner_keywords()
20
 
21
  import requests
22
+ # import os
23
 
24
+ # API_URL = "https://api-inference.huggingface.co/models/shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0"
25
+ # TOKEN = os.environ.get("HUGGING_FACE_TOKEN")
26
+ # headers = {"Authorization": f"Bearer {TOKEN}"}
27
 
28
 
29
+ # def query(payload):
30
+ # response = requests.post(API_URL, headers=headers, json=payload)
31
+ # return response.json()
32
 
33
+ from transformers import pipeline
34
 
35
+ pipe = pipeline("text-generation", model="shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0")
36
 
37
 
38
 
 
43
  B_in, E_in = "[Title]", "[/Title]"
44
  # Format your prompt template
45
  prompt = f"""{B_INST} {B_SYS} You are a helpful assistant that provides accurate and concise responses. {E_SYS}\nExtract named entities from the given product title. Provide the output in JSON format.\n{B_in} {title.strip()} {E_in}\n{E_INST}\n\n### NER Response:\n{{"{title.split()[0].lower()}"""
46
+ # output = query({
47
+ # "inputs": prompt,
48
+ # })
49
 
50
+ return eval(pipe(prompt)[0]["generated_text"].split("### NER Response:\n")[-1])
51
+ #return(eval(output[0]['generated_text'].split("### NER Response:\n")[-1]))
52
  # def ner_title(title):
53
  # word_list = title.split()
54
  # indexed_dict = {index: word for index, word in enumerate(word_list)}