nitinbhayana commited on
Commit
2bc087d
·
verified ·
1 Parent(s): 98103e6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -11
app.py CHANGED
@@ -1,16 +1,23 @@
1
  import streamlit as st
 
2
 
3
- import requests
4
- import os
5
- token=os.environ.get("HUGGING_FACE_TOKEN")
6
 
7
- API_URL = "https://api-inference.huggingface.co/models/shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0"
8
- headers = {"Authorization": f"Bearer {token}"}
 
 
 
9
 
 
 
10
 
11
- def query(payload):
12
- response = requests.post(API_URL, headers=headers, json=payload)
13
- return response.json()
 
14
 
15
  def convert_to_dictionary(input_string):
16
  try:
@@ -117,9 +124,26 @@ def ner_title(title):
117
  B_in, E_in = "[Title]", "[/Title]"
118
  # Format your prompt template
119
  prompt = f"""{B_INST} {B_SYS} You are a helpful assistant that provides accurate and concise responses. {E_SYS}\nExtract named entities from the given product title. Provide the output in JSON format.\n{B_in} {title.strip()} {E_in}\n{E_INST}\n\n### NER Response:\n{{"{title.split()[0].lower()}"""
120
- output = query({
121
- "inputs": prompt,
122
- })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
  #return eval(pipe(text)[0]["generated_text"].split("### NER Response:\n")[-1])
125
  return convert_to_dictionary((output[0]['generated_text'].split("### NER Response:\n")[-1]))
 
1
  import streamlit as st
2
+ import re
3
 
4
+ # Use a pipeline as a high-level helper
5
+ # Load model directly
6
+ from transformers import AutoTokenizer, AutoModelForCausalLM
7
 
8
+ tokenizer = AutoTokenizer.from_pretrained("shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0")
9
+ model = AutoModelForCausalLM.from_pretrained("shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0")
10
+ # import requests
11
+ # import os
12
+ # token=os.environ.get("HUGGING_FACE_TOKEN")
13
 
14
+ # API_URL = "https://api-inference.huggingface.co/models/shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0"
15
+ # headers = {"Authorization": f"Bearer {token}"}
16
 
17
+
18
+ # def query(payload):
19
+ # response = requests.post(API_URL, headers=headers, json=payload)
20
+ # return response.json()
21
 
22
  def convert_to_dictionary(input_string):
23
  try:
 
124
  B_in, E_in = "[Title]", "[/Title]"
125
  # Format your prompt template
126
  prompt = f"""{B_INST} {B_SYS} You are a helpful assistant that provides accurate and concise responses. {E_SYS}\nExtract named entities from the given product title. Provide the output in JSON format.\n{B_in} {title.strip()} {E_in}\n{E_INST}\n\n### NER Response:\n{{"{title.split()[0].lower()}"""
127
+ # output = query({
128
+ # "inputs": prompt,
129
+ # })
130
+
131
+ encoding = tokenizer(prompt, return_tensors="pt").to("cuda:0")
132
+ output = model.generate(input_ids=encoding.input_ids,
133
+ attention_mask=encoding.attention_mask,
134
+ max_new_tokens=512,
135
+ do_sample=True,
136
+ temperature=0.01,
137
+ eos_token_id=tokenizer.eos_token_id,
138
+ top_k=0)
139
+
140
+
141
+
142
+ # Subtract the length of input_ids from output to get only the model's response
143
+ output_text = tokenizer.decode(output[0, len(encoding.input_ids[0]):], skip_special_tokens=False)
144
+ output = re.sub('\n+', '\n', output_text) # remove excessive newline characters
145
+ #output = f"""{{\"{title.split()[0].lower()} {output_text}"""
146
+ #output = re.sub(' ": "', '": "', output)
147
 
148
  #return eval(pipe(text)[0]["generated_text"].split("### NER Response:\n")[-1])
149
  return convert_to_dictionary((output[0]['generated_text'].split("### NER Response:\n")[-1]))