testing / app.py
nitinbhayana's picture
Update app.py
3025fbf verified
raw
history blame
3.41 kB
import streamlit as st
def main():
st.title("Amazon Title Suggestion")
if "title" not in st.session_state:
st.session_state.title = ""
if "ner_dict" not in st.session_state:
st.session_state.ner_dict = {}
if "selected_keywords" not in st.session_state:
st.session_state.selected_keywords = []
if "submitted_title" not in st.session_state:
st.session_state.submitted_title = False
if "submitted_ner_keywords" not in st.session_state:
st.session_state.submitted_ner_keywords = False
if not st.session_state.submitted_title:
submit_title()
elif st.session_state.submitted_title and not st.session_state.submitted_ner_keywords:
submit_ner_keywords()
import requests
# def query(payload):
# response = requests.post(API_URL, headers=headers, json=payload)
# return response.json()
from transformers import pipeline
pipe = pipeline("text-generation", model="shivanikerai/TinyLlama-1.1B-Chat-v1.0-sku-title-ner-generation-reversed-v1.0")
def ner_title(title):
# Define the roles and markers
B_SYS, E_SYS = "<<SYS>>", "<</SYS>>"
B_INST, E_INST = "[INST]", "[/INST]"
B_in, E_in = "[Title]", "[/Title]"
# Format your prompt template
prompt = f"""{B_INST} {B_SYS} You are a helpful assistant that provides accurate and concise responses. {E_SYS}\nExtract named entities from the given product title. Provide the output in JSON format.\n{B_in} {title.strip()} {E_in}\n{E_INST}\n\n### NER Response:\n{{"{title.split()[0].lower()}"""
# output = query({
# "inputs": prompt,
# })
return eval(pipe(text)[0]["generated_text"].split("### NER Response:\n")[-1])
#return(eval(output[0]['generated_text'].split("### NER Response:\n")[-1]))
# def ner_title(title):
# word_list = title.split()
# indexed_dict = {index: word for index, word in enumerate(word_list)}
# return indexed_dict
def submit_title():
title = st.text_input("Enter Product Title:")
if st.button("Submit Title"):
st.session_state.title = title
ner = ner_title(title)
st.session_state.submitted_title = True
st.session_state.ner_dict = ner
def submit_ner_keywords():
st.subheader("Product Features:")
selected_features = []
for key, value in st.session_state.ner_dict.items():
if st.checkbox(f"{key}: {value}"):
selected_features.append(value)
st.subheader("Select Search Terms:")
keyword_list = ['a','b','c','f','g',"Feature", "Price", "Quality", "Availability"]
for keyword in keyword_list:
st.checkbox(keyword, key=keyword)
if st.button("Suggest Titles"):
model2_keywords = [keyword for keyword in keyword_list if st.session_state[keyword]]
st.session_state.selected_keywords = model2_keywords
st.session_state.submitted_ner_keywords = True
st.write("Selected Keywords for Model2:", model2_keywords)
st.write("Selected features for Model2:", selected_features)
if st.button("Reset"):
st.session_state.title = ""
st.session_state.submitted_title = False
st.session_state.submitted_ner_keywords = False
# Reset selected keywords
for keyword in keyword_list:
st.session_state[keyword] = False
# Rerun the app
st.experimental_rerun()
if __name__ == "__main__":
main()