# IndicTransToolkit ## About The goal of this repository is to provide a simple, modular, and extendable toolkit for [IndicTrans2](https://github.com/AI4Bharat/IndicTrans2) and be compatible with the HuggingFace models released. Please refer to the `CHANGELOG.md` for latest developments. ## Pre-requisites - `Python 3.8+` - [Indic NLP Library](https://github.com/VarunGumma/indic_nlp_library) - Other requirements as listed in `requirements.txt` ## Configuration - Editable installation (Note, this may take a while): ```bash git clone https://github.com/VarunGumma/IndicTransToolkit cd IndicTransToolkit pip install --editable . --use-pep517 # required for pip >= 25.0 # in case it fails, try: # pip install --editable . --use-pep517 --config-settings editable_mode=compat ``` ## Examples For the training usecase, please refer [here](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_interface). ### PreTainedTokenizer ```python import torch from IndicTransToolkit.processor import IndicProcessor # NOW IMPLEMENTED IN CYTHON !! from transformers import AutoModelForSeq2SeqLM, AutoTokenizer ip = IndicProcessor(inference=True) tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) sentences = [ "This is a test sentence.", "This is another longer different test sentence.", "Please send an SMS to 9876543210 and an email on newemail123@xyz.com by 15th October, 2023.", ] batch = ip.preprocess_batch(sentences, src_lang="eng_Latn", tgt_lang="hin_Deva", visualize=False) # set it to visualize=True to print a progress bar batch = tokenizer(batch, padding="longest", truncation=True, max_length=256, return_tensors="pt") with torch.inference_mode(): outputs = model.generate(**batch, num_beams=5, num_return_sequences=1, max_length=256) with tokenizer.as_target_tokenizer(): # This scoping is absolutely necessary, as it will instruct the tokenizer to tokenize using the target vocabulary. # Failure to use this scoping will result in gibberish/unexpected predictions as the output will be de-tokenized with the source vocabulary instead. outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True) outputs = ip.postprocess_batch(outputs, lang="hin_Deva") print(outputs) >>> ['यह एक परीक्षण वाक्य है।', 'यह एक और लंबा अलग परीक्षण वाक्य है।', 'कृपया 9876543210 पर एक एस. एम. एस. भेजें और 15 अक्टूबर, 2023 तक newemail123@xyz.com पर एक ईमेल भेजें।'] ``` ### Evaluation - `IndicEvaluator` is a python implementation of [compute_metrics.sh](https://github.com/AI4Bharat/IndicTrans2/blob/main/compute_metrics.sh). - We have found that this python implementation gives slightly lower scores than the original `compute_metrics.sh`. So, please use this function cautiously, and feel free to raise a PR if you have found the bug/fix. ```python from IndicTransToolkit import IndicEvaluator # this method returns a dictionary with BLEU and ChrF2++ scores with appropriate signatures evaluator = IndicEvaluator() scores = evaluator.evaluate(tgt_lang=tgt_lang, preds=pred_file, refs=ref_file) # alternatively, you can pass the list of predictions and references instead of files # scores = evaluator.evaluate(tgt_lang=tgt_lang, preds=preds, refs=refs) ``` ## Authors - Varun Gumma (varun230999@gmail.com) - Jay Gala (jaygala24@gmail.com) - Pranjal Agadh Chitale (pranjalchitale@gmail.com) - Raj Dabre (prajdabre@gmail.com) ## Bugs and Contribution Since this a bleeding-edge module, you may encounter broken stuff and import issues once in a while. In case you encounter any bugs or want additional functionalities, please feel free to raise `Issues`/`Pull Requests` or contact the authors. ## Citation If you use our codebase, or models, please do cite the following paper: ```bibtex @article{ gala2023indictrans, title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages}, author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan}, journal={Transactions on Machine Learning Research}, issn={2835-8856}, year={2023}, url={https://openreview.net/forum?id=vfT4YuzAYA}, note={} } ```