nitikdias's picture
Upload 114 files
74ee63f verified
import sys
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, BitsAndBytesConfig
from transformers.utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10
from IndicTransToolkit import IndicProcessor
from mosestokenizer import MosesSentenceSplitter
from nltk import sent_tokenize
from indicnlp.tokenize.sentence_tokenize import sentence_split, DELIM_PAT_NO_DANDA
en_indic_ckpt_dir = "ai4bharat/indictrans2-en-indic-1B" # ai4bharat/indictrans2-en-indic-dist-200M
indic_en_ckpt_dir = "ai4bharat/indictrans2-indic-en-1B" # ai4bharat/indictrans2-indic-en-dist-200M
indic_indic_ckpt_dir = (
"ai4bharat/indictrans2-indic-indic-dist-320M" # ai4bharat/indictrans2-indic-indic-dist-320M
)
BATCH_SIZE = 4
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
if len(sys.argv) > 1:
quantization = sys.argv[1]
attn_implementation = sys.argv[2]
else:
quantization = ""
attn_implementation = "eager"
# FLORES language code mapping to 2 letter ISO language code for compatibility
# with Indic NLP Library (https://github.com/anoopkunchukuttan/indic_nlp_library)
flores_codes = {
"asm_Beng": "as",
"awa_Deva": "hi",
"ben_Beng": "bn",
"bho_Deva": "hi",
"brx_Deva": "hi",
"doi_Deva": "hi",
"eng_Latn": "en",
"gom_Deva": "kK",
"guj_Gujr": "gu",
"hin_Deva": "hi",
"hne_Deva": "hi",
"kan_Knda": "kn",
"kas_Arab": "ur",
"kas_Deva": "hi",
"kha_Latn": "en",
"lus_Latn": "en",
"mag_Deva": "hi",
"mai_Deva": "hi",
"mal_Mlym": "ml",
"mar_Deva": "mr",
"mni_Beng": "bn",
"mni_Mtei": "hi",
"npi_Deva": "ne",
"ory_Orya": "or",
"pan_Guru": "pa",
"san_Deva": "hi",
"sat_Olck": "or",
"snd_Arab": "ur",
"snd_Deva": "hi",
"tam_Taml": "ta",
"tel_Telu": "te",
"urd_Arab": "ur",
}
def split_sentences(input_text, lang):
if lang == "eng_Latn":
input_sentences = sent_tokenize(input_text)
with MosesSentenceSplitter(flores_codes[lang]) as splitter:
sents_moses = splitter([input_text])
sents_nltk = sent_tokenize(input_text)
if len(sents_nltk) < len(sents_moses):
input_sentences = sents_nltk
else:
input_sentences = sents_moses
input_sentences = [sent.replace("\xad", "") for sent in input_sentences]
else:
input_sentences = sentence_split(
input_text, lang=flores_codes[lang], delim_pat=DELIM_PAT_NO_DANDA
)
return input_sentences
def initialize_model_and_tokenizer(ckpt_dir, quantization, attn_implementation):
if quantization == "4-bit":
qconfig = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
elif quantization == "8-bit":
qconfig = BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_use_double_quant=True,
bnb_8bit_compute_dtype=torch.bfloat16,
)
else:
qconfig = None
if attn_implementation == "flash_attention_2":
if is_flash_attn_2_available() and is_flash_attn_greater_or_equal_2_10():
attn_implementation = "flash_attention_2"
else:
attn_implementation = "eager"
tokenizer = AutoTokenizer.from_pretrained(ckpt_dir, trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained(
ckpt_dir,
trust_remote_code=True,
attn_implementation=attn_implementation,
low_cpu_mem_usage=True,
quantization_config=qconfig,
)
if qconfig == None:
model = model.to(DEVICE)
model.half()
model.eval()
return tokenizer, model
def batch_translate(input_sentences, src_lang, tgt_lang, model, tokenizer, ip):
translations = []
for i in range(0, len(input_sentences), BATCH_SIZE):
batch = input_sentences[i : i + BATCH_SIZE]
# Preprocess the batch and extract entity mappings
batch = ip.preprocess_batch(batch, src_lang=src_lang, tgt_lang=tgt_lang)
# Tokenize the batch and generate input encodings
inputs = tokenizer(
batch,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True,
).to(DEVICE)
# Generate translations using the model
with torch.no_grad():
generated_tokens = model.generate(
**inputs,
use_cache=True,
min_length=0,
max_length=256,
num_beams=5,
num_return_sequences=1,
)
# Decode the generated tokens into text
with tokenizer.as_target_tokenizer():
generated_tokens = tokenizer.batch_decode(
generated_tokens.detach().cpu().tolist(),
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
# Postprocess the translations, including entity replacement
translations += ip.postprocess_batch(generated_tokens, lang=tgt_lang)
del inputs
torch.cuda.empty_cache()
return translations
def translate_paragraph(input_text, src_lang, tgt_lang, model, tokenizer, ip):
input_sentences = split_sentences(input_text, src_lang)
translated_text = batch_translate(input_sentences, src_lang, tgt_lang, model, tokenizer, ip)
return " ".join(translated_text)
ip = IndicProcessor(inference=True)
en_indic_tokenizer, en_indic_model = initialize_model_and_tokenizer(
en_indic_ckpt_dir, quantization, attn_implementation
)
indic_en_tokenizer, indic_en_model = initialize_model_and_tokenizer(
indic_en_ckpt_dir, quantization, attn_implementation
)
indic_indic_tokenizer, indic_indic_model = initialize_model_and_tokenizer(
indic_indic_ckpt_dir, quantization, attn_implementation
)
# ---------------------------------------------------------------------------
# Hindi to English
# ---------------------------------------------------------------------------
hi_sents = [
"जब मैं छोटा था, मैं हर रोज़ पार्क जाता था।",
"उसके पास बहुत सारी पुरानी किताबें हैं, जिन्हें उसने अपने दादा-परदादा से विरासत में पाया।",
"मुझे समझ में नहीं आ रहा कि मैं अपनी समस्या का समाधान कैसे ढूंढूं।",
"वह बहुत मेहनती और समझदार है, इसलिए उसे सभी अच्छे मार्क्स मिले।",
"हमने पिछले सप्ताह एक नई फिल्म देखी जो कि बहुत प्रेरणादायक थी।",
"अगर तुम मुझे उस समय पास मिलते, तो हम बाहर खाना खाने चलते।",
"वह अपनी दीदी के साथ बाजार गयी थी ताकि वह नई साड़ी खरीद सके।",
"राज ने मुझसे कहा कि वह अगले महीने अपनी नानी के घर जा रहा है।",
"सभी बच्चे पार्टी में मज़ा कर रहे थे और खूब सारी मिठाइयाँ खा रहे थे।",
"मेरे मित्र ने मुझे उसके जन्मदिन की पार्टी में बुलाया है, और मैं उसे एक तोहफा दूंगा।",
]
src_lang, tgt_lang = "hin_Deva", "eng_Latn"
en_translations = batch_translate(
hi_sents, src_lang, tgt_lang, indic_en_model, indic_en_tokenizer, ip
)
print(f"\n{src_lang} - {tgt_lang}")
for input_sentence, translation in zip(hi_sents, en_translations):
print(f"{src_lang}: {input_sentence}")
print(f"{tgt_lang}: {translation}")
# ---------------------------------------------------------------------------
# English to Hindi
# ---------------------------------------------------------------------------
en_sents = [
"When I was young, I used to go to the park every day.",
"He has many old books, which he inherited from his ancestors.",
"I can't figure out how to solve my problem.",
"She is very hardworking and intelligent, which is why she got all the good marks.",
"We watched a new movie last week, which was very inspiring.",
"If you had met me at that time, we would have gone out to eat.",
"She went to the market with her sister to buy a new sari.",
"Raj told me that he is going to his grandmother's house next month.",
"All the kids were having fun at the party and were eating lots of sweets.",
"My friend has invited me to his birthday party, and I will give him a gift.",
]
src_lang, tgt_lang = "eng_Latn", "hin_Deva"
hi_translations = batch_translate(
en_sents, src_lang, tgt_lang, en_indic_model, en_indic_tokenizer, ip
)
print(f"\n{src_lang} - {tgt_lang}")
for input_sentence, translation in zip(en_sents, hi_translations):
print(f"{src_lang}: {input_sentence}")
print(f"{tgt_lang}: {translation}")
# ---------------------------------------------------------------------------
# Hindi to Marathi
# ---------------------------------------------------------------------------
hi_sents = [
"जब मैं छोटा था, मैं हर रोज़ पार्क जाता था।",
"उसके पास बहुत सारी पुरानी किताबें हैं, जिन्हें उसने अपने दादा-परदादा से विरासत में पाया।",
"मुझे समझ में नहीं आ रहा कि मैं अपनी समस्या का समाधान कैसे ढूंढूं।",
"वह बहुत मेहनती और समझदार है, इसलिए उसे सभी अच्छे मार्क्स मिले।",
"हमने पिछले सप्ताह एक नई फिल्म देखी जो कि बहुत प्रेरणादायक थी।",
"अगर तुम मुझे उस समय पास मिलते, तो हम बाहर खाना खाने चलते।",
"वह अपनी दीदी के साथ बाजार गयी थी ताकि वह नई साड़ी खरीद सके।",
"राज ने मुझसे कहा कि वह अगले महीने अपनी नानी के घर जा रहा है।",
"सभी बच्चे पार्टी में मज़ा कर रहे थे और खूब सारी मिठाइयाँ खा रहे थे।",
"मेरे मित्र ने मुझे उसके जन्मदिन की पार्टी में बुलाया है, और मैं उसे एक तोहफा दूंगा।",
]
src_lang, tgt_lang = "hin_Deva", "mar_Deva"
mr_translations = batch_translate(
hi_sents, src_lang, tgt_lang, indic_indic_model, indic_indic_tokenizer, ip
)
print(f"\n{src_lang} - {tgt_lang}")
for input_sentence, translation in zip(hi_sents, mr_translations):
print(f"{src_lang}: {input_sentence}")
print(f"{tgt_lang}: {translation}")
# ---------------------------------------------------------------------------
# Paragraph translation
# ---------------------------------------------------------------------------
src_lang, tgt_lang = "hin_Deva", "eng_Latn"
hi_text = "यहाँ एक पाराग्राफ है जो हिंदी में लिखा गया है। हिंदी एक सुंदर भाषा है और भारत की राष्ट्रीय भाषा है। इसका विकास विभिन्न कालों में हुआ है और यह विशेषतः भारतीय उपमहाद्वीप में बोली जाती है। हिंदी भाषा का साहित्य, संस्कृति और इतिहास भी बहुत गर्वनीय है।"
en_translated_text = translate_paragraph(
hi_text, src_lang, tgt_lang, indic_en_model, indic_en_tokenizer, ip
)
print(f"{src_lang}: {hi_text}")
print(f"{tgt_lang}: {en_translated_text}")