|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch IndicTrans config."""
|
|
|
|
|
|
from collections import OrderedDict
|
|
from typing import Any, Mapping, Optional
|
|
|
|
from transformers import PreTrainedTokenizer
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
|
|
from transformers.onnx.utils import compute_effective_axis_dimension
|
|
from transformers.utils import TensorType, is_torch_available
|
|
|
|
|
|
|
|
class IndicTransConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`IT2Model`]. It is used to instantiate an
|
|
IT2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of the IT2
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 50265):
|
|
Vocabulary size of the IT2 model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`IT2Model`] or
|
|
d_model (`int`, *optional*, defaults to 1024):
|
|
Dimensionality of the layers and the pooler layer.
|
|
encoder_layers (`int`, *optional*, defaults to 12):
|
|
Number of encoder layers.
|
|
decoder_layers (`int`, *optional*, defaults to 12):
|
|
Number of decoder layers.
|
|
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
|
Number of attention heads for each attention layer in the Transformer decoder.
|
|
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
|
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
|
dropout (`float`, *optional*, defaults to 0.1):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
activation_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for activations inside the fully connected layer.
|
|
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for classifier.
|
|
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
just in case (e.g., 512 or 1024 or 2048).
|
|
init_std (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
|
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
|
for more details.
|
|
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
|
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
|
for more details.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
|
```"""
|
|
model_type = "IndicTrans"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
attribute_map = {
|
|
"num_attention_heads": "encoder_attention_heads",
|
|
"hidden_size": "d_model",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
encoder_vocab_size=None,
|
|
decoder_vocab_size=None,
|
|
encoder_embed_dim=512,
|
|
decoder_embed_dim=512,
|
|
max_source_positions=210,
|
|
max_target_positions=210,
|
|
encoder_layers=6,
|
|
encoder_ffn_dim=2048,
|
|
encoder_attention_heads=8,
|
|
decoder_layers=6,
|
|
decoder_ffn_dim=2048,
|
|
decoder_attention_heads=8,
|
|
encoder_layerdrop=0.00,
|
|
decoder_layerdrop=0.00,
|
|
use_cache=True,
|
|
is_encoder_decoder=True,
|
|
activation_function="relu",
|
|
encoder_normalize_before=False,
|
|
decoder_normalize_before=False,
|
|
layernorm_embedding=False,
|
|
share_decoder_input_output_embed=False,
|
|
dropout=0.1,
|
|
attention_dropout=0.0,
|
|
activation_dropout=0.0,
|
|
init_std=0.02,
|
|
scale_embedding=True,
|
|
decoder_start_token_id=2,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
attn_implementation="eager",
|
|
**kwargs,
|
|
):
|
|
self.encoder_vocab_size = encoder_vocab_size
|
|
self.decoder_vocab_size = decoder_vocab_size
|
|
self.encoder_normalize_before = encoder_normalize_before
|
|
self.decoder_normalize_before = decoder_normalize_before
|
|
self.layernorm_embedding = layernorm_embedding
|
|
self.max_source_positions = max_source_positions
|
|
self.max_target_positions = max_target_positions
|
|
self.encoder_embed_dim = encoder_embed_dim
|
|
self.decoder_embed_dim = decoder_embed_dim
|
|
self.encoder_ffn_dim = encoder_ffn_dim
|
|
self.encoder_layers = encoder_layers
|
|
self.encoder_attention_heads = encoder_attention_heads
|
|
self.decoder_ffn_dim = decoder_ffn_dim
|
|
self.decoder_layers = decoder_layers
|
|
self.decoder_attention_heads = decoder_attention_heads
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.activation_dropout = activation_dropout
|
|
self.activation_function = activation_function
|
|
self.init_std = init_std
|
|
self.encoder_layerdrop = encoder_layerdrop
|
|
self.decoder_layerdrop = decoder_layerdrop
|
|
self.use_cache = use_cache
|
|
self.num_hidden_layers = encoder_layers
|
|
self.scale_embedding = scale_embedding
|
|
self.share_decoder_input_output_embed = share_decoder_input_output_embed
|
|
self.attn_implementation = attn_implementation
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
is_encoder_decoder=is_encoder_decoder,
|
|
decoder_start_token_id=decoder_start_token_id,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
class IndicTransOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
|
@property
|
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
|
common_inputs = OrderedDict(
|
|
[
|
|
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
|
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
|
]
|
|
)
|
|
|
|
if self.use_past:
|
|
common_inputs["decoder_input_ids"] = {0: "batch"}
|
|
common_inputs["decoder_attention_mask"] = {
|
|
0: "batch",
|
|
1: "past_decoder_sequence + sequence",
|
|
}
|
|
else:
|
|
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
|
common_inputs["decoder_attention_mask"] = {
|
|
0: "batch",
|
|
1: "decoder_sequence",
|
|
}
|
|
|
|
if self.use_past:
|
|
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
|
return common_inputs
|
|
|
|
|
|
|
|
|
|
|
|
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
|
self,
|
|
tokenizer: PreTrainedTokenizer,
|
|
batch_size: int = -1,
|
|
seq_length: int = -1,
|
|
is_pair: bool = False,
|
|
framework: Optional[TensorType] = None,
|
|
) -> Mapping[str, Any]:
|
|
|
|
|
|
|
|
batch_size = compute_effective_axis_dimension(
|
|
batch_size,
|
|
fixed_dimension=OnnxConfig.default_fixed_batch,
|
|
num_token_to_add=0,
|
|
)
|
|
|
|
|
|
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
|
|
seq_length = compute_effective_axis_dimension(
|
|
seq_length,
|
|
fixed_dimension=OnnxConfig.default_fixed_sequence,
|
|
num_token_to_add=token_to_add,
|
|
)
|
|
|
|
|
|
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
|
|
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
|
|
return common_inputs
|
|
|
|
|
|
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
|
|
self,
|
|
tokenizer: PreTrainedTokenizer,
|
|
batch_size: int = -1,
|
|
seq_length: int = -1,
|
|
is_pair: bool = False,
|
|
framework: Optional[TensorType] = None,
|
|
) -> Mapping[str, Any]:
|
|
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
|
tokenizer, batch_size, seq_length, is_pair, framework
|
|
)
|
|
|
|
|
|
decoder_seq_length = seq_length if not self.use_past else 1
|
|
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
|
tokenizer, batch_size, decoder_seq_length, is_pair, framework
|
|
)
|
|
decoder_inputs = {
|
|
f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()
|
|
}
|
|
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
|
|
|
if self.use_past:
|
|
if not is_torch_available():
|
|
raise ValueError(
|
|
"Cannot generate dummy past_keys inputs without PyTorch installed."
|
|
)
|
|
else:
|
|
import torch
|
|
batch, encoder_seq_length = common_inputs["input_ids"].shape
|
|
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
|
(
|
|
num_encoder_attention_heads,
|
|
num_decoder_attention_heads,
|
|
) = self.num_attention_heads
|
|
encoder_shape = (
|
|
batch,
|
|
num_encoder_attention_heads,
|
|
encoder_seq_length,
|
|
self._config.hidden_size // num_encoder_attention_heads,
|
|
)
|
|
decoder_past_length = decoder_seq_length + 3
|
|
decoder_shape = (
|
|
batch,
|
|
num_decoder_attention_heads,
|
|
decoder_past_length,
|
|
self._config.hidden_size // num_decoder_attention_heads,
|
|
)
|
|
|
|
common_inputs["decoder_attention_mask"] = torch.cat(
|
|
[
|
|
common_inputs["decoder_attention_mask"],
|
|
torch.ones(batch, decoder_past_length),
|
|
],
|
|
dim=1,
|
|
)
|
|
|
|
common_inputs["past_key_values"] = []
|
|
|
|
num_encoder_layers, num_decoder_layers = self.num_layers
|
|
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
|
max_num_layers = (
|
|
max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
|
)
|
|
remaining_side_name = (
|
|
"encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
|
)
|
|
|
|
for _ in range(min_num_layers):
|
|
common_inputs["past_key_values"].append(
|
|
(
|
|
torch.zeros(decoder_shape),
|
|
torch.zeros(decoder_shape),
|
|
torch.zeros(encoder_shape),
|
|
torch.zeros(encoder_shape),
|
|
)
|
|
)
|
|
|
|
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
|
for _ in range(min_num_layers, max_num_layers):
|
|
common_inputs["past_key_values"].append(
|
|
(torch.zeros(shape), torch.zeros(shape))
|
|
)
|
|
return common_inputs
|
|
|
|
generate_dummy_inputs = _generate_dummy_inputs_for_default_and_seq2seq_lm
|
|
|