Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,52 @@ import gradio as gr
|
|
2 |
import cv2
|
3 |
import mediapipe as mp
|
4 |
import numpy as np
|
|
|
|
|
5 |
|
6 |
# Initialize Mediapipe Pose Estimation
|
7 |
mp_pose = mp.solutions.pose
|
8 |
pose = mp_pose.Pose(static_image_mode=True, model_complexity=2)
|
9 |
mp_drawing = mp.solutions.drawing_utils
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def estimate_pose(image):
|
12 |
# Convert image from BGR (OpenCV) to RGB
|
13 |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
@@ -15,7 +55,7 @@ def estimate_pose(image):
|
|
15 |
results = pose.process(image_rgb)
|
16 |
|
17 |
if not results.pose_landmarks:
|
18 |
-
return image #
|
19 |
|
20 |
# Draw pose landmarks on the image
|
21 |
annotated_image = image.copy()
|
@@ -27,15 +67,18 @@ def estimate_pose(image):
|
|
27 |
connection_drawing_spec=mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2, circle_radius=2),
|
28 |
)
|
29 |
|
30 |
-
return annotated_image
|
31 |
|
32 |
# Gradio Interface
|
33 |
interface = gr.Interface(
|
34 |
fn=estimate_pose,
|
35 |
inputs=gr.Image(type="numpy", label="Upload an Image"),
|
36 |
-
outputs=
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
39 |
)
|
40 |
|
41 |
# Launch the Gradio app
|
|
|
2 |
import cv2
|
3 |
import mediapipe as mp
|
4 |
import numpy as np
|
5 |
+
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
|
6 |
+
import torch
|
7 |
|
8 |
# Initialize Mediapipe Pose Estimation
|
9 |
mp_pose = mp.solutions.pose
|
10 |
pose = mp_pose.Pose(static_image_mode=True, model_complexity=2)
|
11 |
mp_drawing = mp.solutions.drawing_utils
|
12 |
|
13 |
+
# Initialize Segformer Model for Segmentation
|
14 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
|
15 |
+
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
|
16 |
+
|
17 |
+
# Define body part mapping with unique colors
|
18 |
+
PART_COLORS = {
|
19 |
+
"head": (0, 255, 0),
|
20 |
+
"shoulders": (255, 0, 0),
|
21 |
+
"upper_body": (0, 0, 255),
|
22 |
+
"arms": (255, 255, 0),
|
23 |
+
"lower_body": (255, 0, 255)
|
24 |
+
}
|
25 |
+
|
26 |
+
PART_LABELS = {
|
27 |
+
"head": [0], # Face class in Segformer
|
28 |
+
"shoulders": [2], # Upper body classes (may include neck, shoulders)
|
29 |
+
"upper_body": [3, 4], # Torso classes
|
30 |
+
"arms": [5, 6], # Arms
|
31 |
+
"lower_body": [7, 8] # Legs
|
32 |
+
}
|
33 |
+
|
34 |
+
def segment_image(image):
|
35 |
+
# Preprocess the image for Segformer
|
36 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
37 |
+
outputs = model(**inputs)
|
38 |
+
logits = outputs.logits
|
39 |
+
segmentation = torch.argmax(logits, dim=1).squeeze().cpu().numpy()
|
40 |
+
|
41 |
+
# Create a blank mask image
|
42 |
+
segmented_image = np.zeros_like(image)
|
43 |
+
|
44 |
+
# Color each part with unique colors
|
45 |
+
for part, color in PART_COLORS.items():
|
46 |
+
mask = np.isin(segmentation, PART_LABELS[part])
|
47 |
+
segmented_image[mask] = color
|
48 |
+
|
49 |
+
return segmented_image
|
50 |
+
|
51 |
def estimate_pose(image):
|
52 |
# Convert image from BGR (OpenCV) to RGB
|
53 |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
55 |
results = pose.process(image_rgb)
|
56 |
|
57 |
if not results.pose_landmarks:
|
58 |
+
return image, segment_image(image) # Return original image and segmented image if no pose found
|
59 |
|
60 |
# Draw pose landmarks on the image
|
61 |
annotated_image = image.copy()
|
|
|
67 |
connection_drawing_spec=mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2, circle_radius=2),
|
68 |
)
|
69 |
|
70 |
+
return annotated_image, segment_image(image)
|
71 |
|
72 |
# Gradio Interface
|
73 |
interface = gr.Interface(
|
74 |
fn=estimate_pose,
|
75 |
inputs=gr.Image(type="numpy", label="Upload an Image"),
|
76 |
+
outputs=[
|
77 |
+
gr.Image(type="numpy", label="Pose Landmarks Image"),
|
78 |
+
gr.Image(type="numpy", label="Segmented Body Parts"),
|
79 |
+
],
|
80 |
+
title="Human Pose Estimation and Segmentation",
|
81 |
+
description="Upload an image to detect and visualize human pose landmarks and segment body parts (head, shoulders, upper body, arms, lower body) with different colors.",
|
82 |
)
|
83 |
|
84 |
# Launch the Gradio app
|