Spaces:
Sleeping
Sleeping
""" | |
Minimal (byte-level) Byte Pair Encoding tokenizer. | |
Algorithmically follows along the GPT tokenizer: | |
https://github.com/openai/gpt-2/blob/master/src/encoder.py | |
But: | |
- Does not handle the regular expression splitting pattern. | |
- Does not handle any special tokens. | |
""" | |
from .base import Tokenizer, get_stats, merge, get_compression_ratio | |
class BasicTokenizer(Tokenizer): | |
def __init__(self): | |
super().__init__() | |
def train(self, text, vocab_size, verbose=False): | |
assert vocab_size >= 256 | |
num_merges = vocab_size - 256 | |
tokens = text.encode("utf-8") # raw bytes | |
# input text preprocessing | |
text_bytes = text.encode("utf-8") # raw bytes | |
ids = list(text_bytes) # list of integers in range 0..255 | |
# iteratively merge the most common pairs to create new tokens | |
merges = {} # (int, int) -> int | |
vocab = {idx: bytes([idx]) for idx in range(256)} # int -> bytes | |
for i in range(num_merges): | |
# count up the number of times every consecutive pair appears | |
stats = get_stats(ids) | |
# find the pair with the highest count | |
pair = max(stats, key=stats.get) | |
# mint a new token: assign it the next available id | |
idx = 256 + i | |
# replace all occurrences of pair in ids with idx | |
ids = merge(ids, pair, idx) | |
# save the merge | |
merges[pair] = idx | |
vocab[idx] = vocab[pair[0]] + vocab[pair[1]] | |
# prints | |
if verbose: | |
print(f"merge {i+1}/{num_merges}: {pair} -> {idx} ({vocab[idx]}) had {stats[pair]} occurrences") | |
print(f"compression ratio: {len(tokens) / len(ids):.2f}X") | |
# save class variables | |
self.merges = merges # used in encode() | |
self.vocab = vocab # used in decode() | |
def decode(self, ids): | |
# given ids (list of integers), return Python string | |
text_bytes = b"".join(self.vocab[idx] for idx in ids) | |
text = text_bytes.decode("utf-8", errors="replace") | |
return text | |
def encode(self, text): | |
# given a string text, return the token ids | |
text_bytes = text.encode("utf-8") # raw bytes | |
ids = list(text_bytes) # list of integers in range 0..255 | |
while len(ids) >= 2: | |
# find the pair with the lowest merge index | |
stats = get_stats(ids) | |
pair = min(stats, key=lambda p: self.merges.get(p, float("inf"))) | |
# subtle: if there are no more merges available, the key will | |
# result in an inf for every single pair, and the min will be | |
# just the first pair in the list, arbitrarily | |
# we can detect this terminating case by a membership check | |
if pair not in self.merges: | |
break # nothing else can be merged anymore | |
# otherwise let's merge the best pair (lowest merge index) | |
idx = self.merges[pair] | |
ids = merge(ids, pair, idx) | |
return ids |