Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,7 @@ from langchain.document_loaders.pdf import PyMuPDFLoader
|
|
15 |
import os
|
16 |
#import fitz
|
17 |
#import tempfile
|
|
|
18 |
|
19 |
img = Image.open('image/nexio_logo1.png')
|
20 |
st.set_page_config(page_title="PDF Chatbot App",page_icon=img,layout="centered")
|
@@ -59,21 +60,26 @@ def main():
|
|
59 |
|
60 |
# Accept user question
|
61 |
query = st.text_input("Ask questions about your PDF file:")
|
62 |
-
|
63 |
if query:
|
64 |
|
65 |
#PATH = 'model/'
|
66 |
#llm = AutoModelForCausalLM.from_pretrained("CohereForAI/aya-101")
|
67 |
# llm = AutoModelForCausalLM.from_pretrained(PATH,local_files_only=True)
|
68 |
llm = huggingface_hub.HuggingFaceHub(repo_id="google/flan-t5-small",
|
69 |
-
model_kwargs={"temperature":1.0, "max_length":
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
st.write(response)
|
78 |
|
79 |
|
|
|
15 |
import os
|
16 |
#import fitz
|
17 |
#import tempfile
|
18 |
+
from langchain.chains.summarize import load_summarize_chain
|
19 |
|
20 |
img = Image.open('image/nexio_logo1.png')
|
21 |
st.set_page_config(page_title="PDF Chatbot App",page_icon=img,layout="centered")
|
|
|
60 |
|
61 |
# Accept user question
|
62 |
query = st.text_input("Ask questions about your PDF file:")
|
63 |
+
|
64 |
if query:
|
65 |
|
66 |
#PATH = 'model/'
|
67 |
#llm = AutoModelForCausalLM.from_pretrained("CohereForAI/aya-101")
|
68 |
# llm = AutoModelForCausalLM.from_pretrained(PATH,local_files_only=True)
|
69 |
llm = huggingface_hub.HuggingFaceHub(repo_id="google/flan-t5-small",
|
70 |
+
model_kwargs={"temperature":1.0, "max_length":256})
|
71 |
+
if query == 'Summarize':
|
72 |
+
docs = pdf_reader.load_and_split()
|
73 |
+
chain = load_summarize_chain(llm, chain_type="map_reduce")
|
74 |
+
response = chain.run(docs)
|
75 |
+
else:
|
76 |
+
docs = vector_store.similarity_search(query=query, k=2)
|
77 |
+
#st.write(docs)
|
78 |
+
chain = load_qa_chain(llm=llm, chain_type="stuff")
|
79 |
+
response = chain.run(input_documents=docs, question=query)
|
80 |
+
#retriever=vector_store.as_retriever()
|
81 |
+
#chain = RetrievalQA.from_chain_type(llm=llm,chain_type="stuff",retriever=retriever)
|
82 |
+
#response = chain.run(chain)
|
83 |
st.write(response)
|
84 |
|
85 |
|