Spaces:
Runtime error
Runtime error
""" | |
2025.3.17 | |
2025.3.19 | |
4.50.3 | |
0.15.2 | |
__UNSLOTH_VERSIONING__ | |
""" | |
from torch import Tensor | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from trl.trainer.grpo_trainer import (Any, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, Dataset, GRPOConfig, GRPOTrainer, GenerationConfig, IterableDataset, Optional, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, RepeatRandomSampler, RewardFunc, Sampler, SyncRefModelCallback, Trainer, TrainerCallback, Union, apply_chat_template, broadcast_object_list, create_reference_model, defaultdict, gather, gather_object, generate_model_card, get_comet_experiment_url, is_conversational, is_deepspeed_zero3_enabled, is_peft_model, is_wandb_available, maybe_apply_chat_template, nn, os, pad, patch, prepare_deepspeed, set_seed, textwrap, torch, transformers, unwrap_model_for_generation, version, wandb, warnings, os, torch, transformers, Any, Union, apply_chat_template, broadcast_object_list, gather, gather_object, is_conversational, maybe_apply_chat_template, nn, os, pad, torch, unwrap_model_for_generation, wandb, GRPOTrainer, Trainer, gather, os, torch) | |
import os | |
from typing import * | |
from dataclasses import dataclass, field | |
from packaging.version import Version | |
import torch | |
import numpy as np | |
from contextlib import nullcontext | |
from torch.nn import functional as F | |
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling | |
torch_compile_options = { | |
"epilogue_fusion" : True, | |
"max_autotune" : False, | |
"shape_padding" : True, | |
"trace.enabled" : False, | |
"triton.cudagraphs" : False, | |
} | |
def selective_log_softmax(logits, index): | |
logits = logits.to(torch.float32) | |
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) | |
# loop to reduce peak mem consumption | |
# logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits]) | |
logsumexp_values = torch.logsumexp(logits, dim = -1) | |
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x) | |
return per_token_logps | |
def grpo_compute_loss(old_logits, new_logits, input_ids, mask, beta, advantages): | |
# All Unsloth Zoo code licensed under LGPLv3 | |
old_logits = old_logits.to(torch.float32) | |
new_logits = new_logits.to(torch.float32) | |
input_ids = input_ids.unsqueeze(-1) | |
# x_i - logsumexp(x_i) | |
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1) | |
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1) | |
old = old_x - torch.logsumexp(old_logits, dim = -1) | |
new = new_x - torch.logsumexp(new_logits, dim = -1) | |
# Reverse KL | |
kl_i = torch.exp(old - new) - (old - new) - 1.0 | |
# Full correct reverse KL divergence?? Missing term maybe? | |
# kl_i = torch.exp(new) * kl_i | |
# Below is forward KL (normal KL) | |
# kl_i = torch.exp(old) * (old - new) | |
# Must detach - otherwise gradients are not propagated correctly! | |
# exp(x - x) == 1 | |
loss_i = torch.exp(new - new.detach()) * advantages.unsqueeze(1) | |
loss_i = -(loss_i - beta * kl_i) | |
mask = mask.to(torch.float32) | |
n_mask_per_reward = mask.sum(1) | |
# See https://github.com/huggingface/trl/pull/2881 | |
loss_per_reward = (loss_i * mask).sum(1) / n_mask_per_reward | |
loss = loss_per_reward.mean() | |
# loss = (loss_i * mask).sum() / mask.sum() | |
# Get metrics as well which are folded | |
with torch.inference_mode(): | |
completion_length = n_mask_per_reward.mean() | |
mean_kl_per_reward = (kl_i * mask).sum(1) / n_mask_per_reward | |
mean_kl = mean_kl_per_reward.mean() | |
pass | |
return loss, completion_length, mean_kl | |
class UnslothEfficientGRPO(torch.autograd.Function): | |
# All Unsloth Zoo code licensed under LGPLv3 | |
def forward(ctx, _new_hidden_states, _old_hidden_states, lm_head, _input_ids, _mask, _advantages, beta, scaler = None, n_chunks = 1): | |
def compute_loss(new_hidden_states, old_hidden_states, input_ids, mask, advantages, scaling): | |
new_logits = torch.matmul(new_hidden_states, lm_head.t()) | |
new_logits = new_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred | |
old_logits = torch.matmul(old_hidden_states, lm_head.t()) | |
old_logits = old_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred | |
loss, completion_length, mean_kl = grpo_compute_loss( | |
old_logits, new_logits, input_ids, mask, beta, advantages, | |
) | |
# Scale loss if needed for mixed precision training | |
scaled_loss = loss * scaling | |
# Must add .loss.detach otherwise autograd uses 2x VRAM | |
return scaled_loss, (loss.detach(), completion_length, mean_kl,) | |
pass | |
device =_new_hidden_states.device | |
grad_inputs = torch.empty_like(_new_hidden_states) | |
accumulated_loss = torch.zeros(1, device = device) | |
accumulated_completion_length = torch.zeros(1, device = device) | |
accumulated_mean_kl = torch.zeros(1, device = device) | |
def accumulate_chunk(new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling): | |
(chunk_grad_input,), (chunk_loss, (unscaled_loss, chunk_completion_length, chunk_mean_kl,)) = torch.func.grad_and_value( | |
compute_loss, | |
argnums = (0,), | |
has_aux = True, | |
)(new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling) | |
accumulated_loss .add_(unscaled_loss) | |
accumulated_completion_length.add_(chunk_completion_length) | |
accumulated_mean_kl .add_(chunk_mean_kl) | |
return chunk_grad_input | |
pass | |
accumulate_chunk = torch.compile( | |
accumulate_chunk, | |
fullgraph = True, | |
options = torch_compile_options, | |
) | |
grad_inputs_chunks = torch.chunk(grad_inputs, chunks = n_chunks, dim = 0) | |
new_hidden_states = torch.chunk(_new_hidden_states, chunks = n_chunks, dim = 0) | |
old_hidden_states = torch.chunk(_old_hidden_states, chunks = n_chunks, dim = 0) | |
input_ids = torch.chunk(_input_ids, chunks = n_chunks, dim = 0) | |
mask = torch.chunk(_mask, chunks = n_chunks, dim = 0) | |
advantages = torch.chunk(_advantages, chunks = n_chunks, dim = 0) | |
# Get mixed precision scaling if seen | |
scaling = scaler.get_scale() if scaler is not None else 1.0 | |
# Force torch.compile to use dynamic shapes for seqlen dim | |
mark_dynamic = lambda x: torch._dynamo.mark_dynamic(x, 1) | |
for (grad_inputs_j, new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j,) in \ | |
zip(grad_inputs_chunks, new_hidden_states, old_hidden_states, input_ids, mask, advantages): | |
mark_dynamic(new_hidden_states_j) | |
mark_dynamic(old_hidden_states_j) | |
mark_dynamic(input_ids_j) | |
mark_dynamic(mask_j) | |
grad_inputs_j.copy_( | |
accumulate_chunk(new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling) | |
) | |
pass | |
grad_inputs .div_(n_chunks) | |
accumulated_loss .div_(n_chunks) | |
accumulated_completion_length.div_(n_chunks) | |
accumulated_mean_kl .div_(n_chunks) | |
ctx.save_for_backward(grad_inputs) | |
return ( | |
accumulated_loss, | |
accumulated_completion_length, | |
accumulated_mean_kl, | |
) | |
pass | |
def backward(ctx, grad_output, dcompletion_length, dmean_kl): | |
(grad_input,) = ctx.saved_tensors | |
return (grad_input, None, None, None, None, None, None, None, None,) | |
pass | |
def grpo_accumulated_loss( | |
trainer, | |
input_ids, | |
logits_to_keep, | |
completion_mask, | |
advantages, | |
n_chunks = -1, | |
): | |
# All Unsloth Zoo code licensed under LGPLv3 | |
bsz, qlen = input_ids.shape | |
# Find closest multiple | |
factors = [i for i in range(1, bsz + 1) if bsz % i == 0] | |
if n_chunks == -1: n_chunks = bsz | |
n_chunks = factors[min(np.searchsorted(factors, n_chunks), len(factors)-1)] | |
mixed_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16 | |
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "1" | |
completion_input_ids = input_ids[:, -logits_to_keep:] | |
lm_head = trainer.model.get_output_embeddings().weight | |
with torch.amp.autocast(device_type = "cuda", dtype = mixed_dtype): | |
with torch.inference_mode(), trainer.accelerator.unwrap_model(trainer.model, keep_fp32_wrapper = False).disable_adapter(): | |
old_hidden_states = trainer.model(input_ids = input_ids, logits_to_keep = logits_to_keep + 1).logits | |
pass | |
new_hidden_states = trainer.model(input_ids = input_ids, logits_to_keep = logits_to_keep + 1).logits | |
loss, completion_length, mean_kl = UnslothEfficientGRPO.apply( | |
new_hidden_states, old_hidden_states, lm_head, | |
completion_input_ids, completion_mask, advantages, trainer.beta, | |
trainer.accelerator.scaler, | |
n_chunks, | |
) | |
return loss, completion_length, mean_kl | |
# Old non efficient code path | |
new_logits = torch.matmul(new_hidden_states, lm_head.t()) | |
new_logits = new_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred | |
old_logits = torch.matmul(old_hidden_states, lm_head.t()) | |
old_logits = old_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred | |
loss, completion_length, mean_kl = grpo_compute_loss( | |
old_logits, new_logits, completion_input_ids, completion_mask, trainer.beta, advantages, | |
) | |
return loss, completion_length, mean_kl | |
pass | |
def grpo_compute_loss_slow(old_logits, new_logits, input_ids, mask, beta, advantages): | |
# All Unsloth Zoo code licensed under LGPLv3 | |
old_logits = old_logits.to(torch.float32) | |
new_logits = new_logits.to(torch.float32) | |
input_ids = input_ids.unsqueeze(-1) | |
# x_i - logsumexp(x_i) | |
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1) | |
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1) | |
old = old_x - torch.logsumexp(old_logits, dim = -1) | |
new = new_x - torch.logsumexp(new_logits, dim = -1) | |
# Reverse KL | |
kl_i = torch.exp(old - new) - (old - new) - 1.0 | |
# Full correct reverse KL divergence?? Missing term maybe? | |
# kl_i = torch.exp(new) * kl_i | |
# Below is forward KL (normal KL) | |
# kl_i = torch.exp(old) * (old - new) | |
# Must detach - otherwise gradients are not propagated correctly! | |
# exp(x - x) == 1 | |
loss_i = torch.exp(new - new.detach()) * advantages.unsqueeze(1) | |
loss_i = -(loss_i - beta * kl_i) | |
mask = mask.to(torch.float32) | |
n_mask_per_reward = mask.sum(1) | |
# See https://github.com/huggingface/trl/pull/2881 | |
loss_per_reward = (loss_i * mask).sum(1) / n_mask_per_reward | |
loss = loss_per_reward.mean() | |
# loss = (loss_i * mask).sum() / mask.sum() | |
# Get metrics as well which are folded | |
with torch.inference_mode(): | |
completion_length = n_mask_per_reward.mean() | |
mean_kl_per_reward = (kl_i * mask).sum(1) / n_mask_per_reward | |
mean_kl = mean_kl_per_reward.mean() | |
pass | |
return loss, completion_length, mean_kl | |
def vLLMSamplingParams(**kwargs): | |
from vllm import SamplingParams | |
sampling_params = SamplingParams(**kwargs) | |
sampling_params._set_kwargs = kwargs | |
return sampling_params | |
class UnslothGRPOConfig(GRPOConfig): | |
""" | |
Configuration class for the [`GRPOTrainer`]. | |
Only the parameters specific to GRPO training are listed here. For details on other parameters, refer to the | |
[`~transformers.TrainingArguments`] documentation. | |
Using [`~transformers.HfArgumentParser`] we can turn this class into | |
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
command line. | |
Parameters: | |
> Parameters that control the model and reference model | |
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model` | |
argument of the [`GRPOTrainer`] is provided as a string. | |
> Parameters that control the data preprocessing | |
remove_unused_columns (`bool`, *optional*, defaults to `False`): | |
Whether to only keep the column `"prompt"` in the dataset. If you use a custom reward function that | |
requires any column other than `"prompts"` and `"completions"`, you should keep this to `False`. | |
max_prompt_length (`int` or `None`, *optional*, defaults to `512`): | |
Maximum length of the prompt. If the prompt is longer than this value, it will be truncated left. | |
num_generations (`int` or `None`, *optional*, defaults to `8`): | |
Number of generations per prompt to sample. The global batch size (num_processes * per_device_batch_size) | |
must be divisible by this value. | |
temperature (`float`, *optional*, defaults to `0.9`): | |
Temperature for sampling. The higher the temperature, the more random the completions. | |
max_completion_length (`int` or `None`, *optional*, defaults to `256`): | |
Maximum length of the generated completion. | |
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): | |
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, | |
improving generation speed. However, disabling this option allows training models that exceed the VRAM | |
capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible | |
with vLLM generation. | |
> Parameters that control generation acceleration powered by vLLM | |
use_vllm (`bool`, *optional*, defaults to `False`): | |
Whether to use vLLM for generating completions. If set to `True`, ensure that a GPU is kept unused for | |
training, as vLLM will require one for generation. vLLM must be installed (`pip install vllm`). | |
vllm_device (`str`, *optional*, defaults to `"auto"`): | |
Device where vLLM generation will run, e.g. `"cuda:1"`. If set to `"auto"` (default), the system will | |
automatically select the next available GPU after the last one used for training. This assumes that | |
training has not already occupied all available GPUs. If only one device is available, the device will be | |
shared between both training and vLLM. | |
vllm_gpu_memory_utilization (`float`, *optional*, defaults to `0.9`): | |
Ratio (between 0 and 1) of GPU memory to reserve for the model weights, activations, and KV cache on the | |
device dedicated to generation powered by vLLM. Higher values will increase the KV cache size and thus | |
improve the model's throughput. However, if the value is too high, it may cause out-of-memory (OOM) errors | |
during initialization. | |
vllm_dtype (`str`, *optional*, defaults to `"auto"`): | |
Data type to use for vLLM generation. If set to `"auto"`, the data type will be automatically determined | |
based on the model configuration. Find the supported values in the vLLM documentation. | |
vllm_max_model_len (`int` or `None`, *optional*, defaults to `None`): | |
If set, the `max_model_len` to use for vLLM. This could be useful when running with reduced | |
`vllm_gpu_memory_utilization`, leading to a reduced KV cache size. If not set, vLLM will use the model | |
context size, which might be much larger than the KV cache, leading to inefficiencies. | |
> Parameters that control the training | |
learning_rate (`float`, *optional*, defaults to `1e-6`): | |
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of | |
[`~transformers.TrainingArguments`]. | |
beta (`float`, *optional*, defaults to `0.04`): | |
KL coefficient. | |
reward_weights (`list[float]` or `None`, *optional*, defaults to `None`): | |
Weights for each reward function. Must match the number of reward functions. If `None`, all rewards are | |
weighted equally with weight `1.0`. | |
sync_ref_model (`bool`, *optional*, defaults to `False`): | |
Whether to synchronize the reference model with the active model every `ref_model_sync_steps` steps, using | |
the `ref_model_mixup_alpha` parameter. This synchronization originites from the | |
[TR-DPO](https://huggingface.co/papers/2404.09656) paper. | |
ref_model_mixup_alpha (`float`, *optional*, defaults to `0.9`): | |
α parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which controls the mix | |
between the current policy and the previous reference policy during updates. The reference policy is | |
updated according to the equation: `π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you | |
must set `sync_ref_model=True`. | |
ref_model_sync_steps (`int`, *optional*, defaults to `64`): | |
τ parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which determines how | |
frequently the current policy is synchronized with the reference policy. To use this parameter, you must | |
set `sync_ref_model=True`. | |
> Parameters that control the logging | |
log_completions (`bool`, *optional*, defaults to `False`): | |
Whether to log the completions during training. | |
""" | |
vllm_sampling_params: Optional[Any] = field( | |
default = None, | |
metadata = {'help': 'vLLM SamplingParams'}, | |
) | |
unsloth_num_chunks : Optional[int] = field( | |
default = -1, | |
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, | |
) | |
def __init__( | |
self, | |
output_dir = None, | |
overwrite_output_dir = None, | |
do_train = False, | |
do_eval = False, | |
do_predict = False, | |
eval_strategy = 'no', | |
prediction_loss_only = False, | |
per_device_train_batch_size = 4, | |
per_device_eval_batch_size = 4, | |
per_gpu_train_batch_size = None, | |
per_gpu_eval_batch_size = None, | |
gradient_accumulation_steps = 2, | |
eval_accumulation_steps = 2, | |
eval_delay = 0, | |
torch_empty_cache_steps = 250, | |
learning_rate = 5e-05, | |
weight_decay = 0.01, | |
adam_beta1 = 0.9, | |
adam_beta2 = 0.999, | |
adam_epsilon = 1e-08, | |
max_grad_norm = 1.0, | |
num_train_epochs = 3.0, | |
max_steps = -1, | |
lr_scheduler_type = 'linear', | |
warmup_ratio = 0.1, | |
warmup_steps = 0, | |
log_level = 'passive', | |
log_level_replica = 'warning', | |
log_on_each_node = True, | |
logging_dir = None, | |
logging_strategy = 'steps', | |
logging_first_step = False, | |
logging_steps = 1, | |
logging_nan_inf_filter = False, | |
save_strategy = 'steps', | |
save_steps = 500, | |
save_total_limit = None, | |
save_safetensors = True, | |
save_on_each_node = False, | |
save_only_model = False, | |
restore_callback_states_from_checkpoint = False, | |
no_cuda = False, | |
use_cpu = False, | |
use_mps_device = False, | |
seed = 3407, | |
data_seed = 3407, | |
jit_mode_eval = False, | |
use_ipex = False, | |
bf16 = False, | |
fp16 = False, | |
fp16_opt_level = 'O1', | |
half_precision_backend = 'auto', | |
bf16_full_eval = False, | |
fp16_full_eval = False, | |
tf32 = None, | |
local_rank = -1, | |
ddp_backend = None, | |
tpu_num_cores = None, | |
tpu_metrics_debug = False, | |
debug = '', | |
dataloader_drop_last = False, | |
eval_steps = None, | |
dataloader_num_workers = 0, | |
dataloader_prefetch_factor = None, | |
past_index = -1, | |
run_name = None, | |
disable_tqdm = None, | |
remove_unused_columns = False, | |
label_names = None, | |
load_best_model_at_end = False, | |
metric_for_best_model = None, | |
greater_is_better = None, | |
ignore_data_skip = False, | |
fsdp = '', | |
fsdp_min_num_params = 0, | |
fsdp_config = None, | |
tp_size = 0, | |
fsdp_transformer_layer_cls_to_wrap = None, | |
accelerator_config = None, | |
deepspeed = None, | |
label_smoothing_factor = 0.0, | |
optim = 'adamw_8bit', | |
optim_args = None, | |
adafactor = False, | |
group_by_length = False, | |
length_column_name = 'length', | |
report_to = None, | |
ddp_find_unused_parameters = None, | |
ddp_bucket_cap_mb = None, | |
ddp_broadcast_buffers = None, | |
dataloader_pin_memory = True, | |
dataloader_persistent_workers = False, | |
skip_memory_metrics = True, | |
use_legacy_prediction_loop = False, | |
push_to_hub = False, | |
resume_from_checkpoint = None, | |
hub_model_id = None, | |
hub_strategy = 'every_save', | |
hub_token = None, | |
hub_private_repo = None, | |
hub_always_push = False, | |
gradient_checkpointing = False, | |
gradient_checkpointing_kwargs = None, | |
include_inputs_for_metrics = False, | |
eval_do_concat_batches = True, | |
fp16_backend = 'auto', | |
evaluation_strategy = None, | |
push_to_hub_model_id = None, | |
push_to_hub_organization = None, | |
push_to_hub_token = None, | |
mp_parameters = '', | |
auto_find_batch_size = False, | |
full_determinism = False, | |
torchdynamo = None, | |
ray_scope = 'last', | |
ddp_timeout = 1800, | |
torch_compile = False, | |
torch_compile_backend = None, | |
torch_compile_mode = None, | |
dispatch_batches = None, | |
split_batches = None, | |
include_tokens_per_second = False, | |
include_num_input_tokens_seen = False, | |
neftune_noise_alpha = None, | |
optim_target_modules = None, | |
batch_eval_metrics = False, | |
eval_on_start = False, | |
use_liger_kernel = False, | |
eval_use_gather_object = False, | |
average_tokens_across_devices = False, | |
model_init_kwargs = None, | |
max_prompt_length = 512, | |
num_generations = 8, | |
temperature = 0.9, | |
max_completion_length = 256, | |
ds3_gather_for_generation = True, | |
use_vllm = False, | |
vllm_device = 'auto', | |
vllm_gpu_memory_utilization = 0.9, | |
vllm_dtype = 'auto', | |
vllm_max_model_len = None, | |
beta = 0.04, | |
reward_weights = None, | |
sync_ref_model = False, | |
ref_model_mixup_alpha = 0.9, | |
ref_model_sync_steps = 64, | |
log_completions = False, | |
vllm_sampling_params = None, | |
unsloth_num_chunks = -1, | |
**kwargs, | |
): | |
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') | |
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') | |
if output_dir is None and save_strategy == 'steps' and save_steps == 500: | |
output_dir = 'unsloth_training_checkpoints' | |
save_strategy = 'no' | |
div = per_device_train_batch_size // num_generations | |
if div * num_generations != per_device_train_batch_size: | |
print('Unsloth: We now expect `per_device_train_batch_size` to be a multiple of `num_generations`.\nWe will change the batch size of ' + str(per_device_train_batch_size) + ' to the `num_generations` of ' + str(num_generations)) | |
per_device_train_batch_size = num_generations | |
super().__init__( | |
output_dir = output_dir, | |
overwrite_output_dir = overwrite_output_dir, | |
do_train = do_train, | |
do_eval = do_eval, | |
do_predict = do_predict, | |
eval_strategy = eval_strategy, | |
prediction_loss_only = prediction_loss_only, | |
per_device_train_batch_size = per_device_train_batch_size, | |
per_device_eval_batch_size = per_device_eval_batch_size, | |
per_gpu_train_batch_size = per_gpu_train_batch_size, | |
per_gpu_eval_batch_size = per_gpu_eval_batch_size, | |
gradient_accumulation_steps = gradient_accumulation_steps, | |
eval_accumulation_steps = eval_accumulation_steps, | |
eval_delay = eval_delay, | |
torch_empty_cache_steps = torch_empty_cache_steps, | |
learning_rate = learning_rate, | |
weight_decay = weight_decay, | |
adam_beta1 = adam_beta1, | |
adam_beta2 = adam_beta2, | |
adam_epsilon = adam_epsilon, | |
max_grad_norm = max_grad_norm, | |
num_train_epochs = num_train_epochs, | |
max_steps = max_steps, | |
lr_scheduler_type = lr_scheduler_type, | |
warmup_ratio = warmup_ratio, | |
warmup_steps = warmup_steps, | |
log_level = log_level, | |
log_level_replica = log_level_replica, | |
log_on_each_node = log_on_each_node, | |
logging_dir = logging_dir, | |
logging_strategy = logging_strategy, | |
logging_first_step = logging_first_step, | |
logging_steps = logging_steps, | |
logging_nan_inf_filter = logging_nan_inf_filter, | |
save_strategy = save_strategy, | |
save_steps = save_steps, | |
save_total_limit = save_total_limit, | |
save_safetensors = save_safetensors, | |
save_on_each_node = save_on_each_node, | |
save_only_model = save_only_model, | |
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, | |
no_cuda = no_cuda, | |
use_cpu = use_cpu, | |
use_mps_device = use_mps_device, | |
seed = seed, | |
data_seed = data_seed, | |
jit_mode_eval = jit_mode_eval, | |
use_ipex = use_ipex, | |
bf16 = bf16, | |
fp16 = fp16, | |
fp16_opt_level = fp16_opt_level, | |
half_precision_backend = half_precision_backend, | |
bf16_full_eval = bf16_full_eval, | |
fp16_full_eval = fp16_full_eval, | |
tf32 = tf32, | |
local_rank = local_rank, | |
ddp_backend = ddp_backend, | |
tpu_num_cores = tpu_num_cores, | |
tpu_metrics_debug = tpu_metrics_debug, | |
debug = debug, | |
dataloader_drop_last = dataloader_drop_last, | |
eval_steps = eval_steps, | |
dataloader_num_workers = dataloader_num_workers, | |
dataloader_prefetch_factor = dataloader_prefetch_factor, | |
past_index = past_index, | |
run_name = run_name, | |
disable_tqdm = disable_tqdm, | |
remove_unused_columns = remove_unused_columns, | |
label_names = label_names, | |
load_best_model_at_end = load_best_model_at_end, | |
metric_for_best_model = metric_for_best_model, | |
greater_is_better = greater_is_better, | |
ignore_data_skip = ignore_data_skip, | |
fsdp = fsdp, | |
fsdp_min_num_params = fsdp_min_num_params, | |
fsdp_config = fsdp_config, | |
tp_size = tp_size, | |
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, | |
accelerator_config = accelerator_config, | |
deepspeed = deepspeed, | |
label_smoothing_factor = label_smoothing_factor, | |
optim = optim, | |
optim_args = optim_args, | |
adafactor = adafactor, | |
group_by_length = group_by_length, | |
length_column_name = length_column_name, | |
report_to = report_to, | |
ddp_find_unused_parameters = ddp_find_unused_parameters, | |
ddp_bucket_cap_mb = ddp_bucket_cap_mb, | |
ddp_broadcast_buffers = ddp_broadcast_buffers, | |
dataloader_pin_memory = dataloader_pin_memory, | |
dataloader_persistent_workers = dataloader_persistent_workers, | |
skip_memory_metrics = skip_memory_metrics, | |
use_legacy_prediction_loop = use_legacy_prediction_loop, | |
push_to_hub = push_to_hub, | |
resume_from_checkpoint = resume_from_checkpoint, | |
hub_model_id = hub_model_id, | |
hub_strategy = hub_strategy, | |
hub_token = hub_token, | |
hub_private_repo = hub_private_repo, | |
hub_always_push = hub_always_push, | |
gradient_checkpointing = gradient_checkpointing, | |
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, | |
include_inputs_for_metrics = include_inputs_for_metrics, | |
eval_do_concat_batches = eval_do_concat_batches, | |
fp16_backend = fp16_backend, | |
evaluation_strategy = evaluation_strategy, | |
push_to_hub_model_id = push_to_hub_model_id, | |
push_to_hub_organization = push_to_hub_organization, | |
push_to_hub_token = push_to_hub_token, | |
mp_parameters = mp_parameters, | |
auto_find_batch_size = auto_find_batch_size, | |
full_determinism = full_determinism, | |
torchdynamo = torchdynamo, | |
ray_scope = ray_scope, | |
ddp_timeout = ddp_timeout, | |
torch_compile = torch_compile, | |
torch_compile_backend = torch_compile_backend, | |
torch_compile_mode = torch_compile_mode, | |
dispatch_batches = dispatch_batches, | |
split_batches = split_batches, | |
include_tokens_per_second = include_tokens_per_second, | |
include_num_input_tokens_seen = include_num_input_tokens_seen, | |
neftune_noise_alpha = neftune_noise_alpha, | |
optim_target_modules = optim_target_modules, | |
batch_eval_metrics = batch_eval_metrics, | |
eval_on_start = eval_on_start, | |
use_liger_kernel = use_liger_kernel, | |
eval_use_gather_object = eval_use_gather_object, | |
average_tokens_across_devices = average_tokens_across_devices, | |
model_init_kwargs = model_init_kwargs, | |
max_prompt_length = max_prompt_length, | |
num_generations = num_generations, | |
temperature = temperature, | |
max_completion_length = max_completion_length, | |
ds3_gather_for_generation = ds3_gather_for_generation, | |
use_vllm = use_vllm, | |
vllm_device = vllm_device, | |
vllm_gpu_memory_utilization = vllm_gpu_memory_utilization, | |
vllm_dtype = vllm_dtype, | |
vllm_max_model_len = vllm_max_model_len, | |
beta = beta, | |
reward_weights = reward_weights, | |
sync_ref_model = sync_ref_model, | |
ref_model_mixup_alpha = ref_model_mixup_alpha, | |
ref_model_sync_steps = ref_model_sync_steps, | |
log_completions = log_completions,**kwargs) | |
self.vllm_sampling_params = vllm_sampling_params | |
self.unsloth_num_chunks = unsloth_num_chunks | |
pass | |
class _UnslothGRPOTrainer(Trainer): | |
"""""" | |
_tag_names = ["trl", "grpo"] | |
def __init__( | |
self, | |
model: Union[str, PreTrainedModel], | |
reward_funcs: Union[RewardFunc, list[RewardFunc]], | |
args: GRPOConfig = None, | |
train_dataset: Optional[Union[Dataset, IterableDataset]] = None, | |
eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None, | |
processing_class: Optional[PreTrainedTokenizerBase] = None, | |
reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None, | |
callbacks: Optional[list[TrainerCallback]] = None, | |
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None), | |
peft_config: Optional["PeftConfig"] = None, | |
): | |
if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm') and (getattr(args, 'use_vllm', False) == False): args.use_vllm = True | |
# Args | |
if args is None: | |
model_name = model if isinstance(model, str) else model.config._name_or_path | |
model_name = model_name.split("/")[-1] | |
args = GRPOConfig(f"{model_name}-GRPO") | |
# Models | |
# Trained model | |
model_init_kwargs = args.model_init_kwargs or {} | |
if isinstance(model, str): | |
model_id = model | |
torch_dtype = model_init_kwargs.get("torch_dtype") | |
if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None: | |
pass # torch_dtype is already a torch.dtype or "auto" or None | |
elif isinstance(torch_dtype, str): # it's a str, but not "auto" | |
torch_dtype = getattr(torch, torch_dtype) | |
model_init_kwargs["torch_dtype"] = torch_dtype | |
else: | |
raise ValueError( | |
"Invalid `torch_dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing " | |
f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}." | |
) | |
# Disable caching if gradient checkpointing is enabled (not supported) | |
model_init_kwargs["use_cache"] = ( | |
False if args.gradient_checkpointing else model_init_kwargs.get("use_cache") | |
) | |
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) | |
else: | |
model_id = model.config._name_or_path | |
if args.model_init_kwargs is not None: | |
raise ValueError( | |
"You passed `model_init_kwargs` to the `GRPOConfig`, but your model is already instantiated. " | |
"This argument can only be used when the `model` argument is a string." | |
) | |
if False: | |
model = model | |
# Reference model | |
if is_deepspeed_zero3_enabled(): | |
self.ref_model = AutoModelForCausalLM.from_pretrained(model_id, **model_init_kwargs) | |
elif not is_peft_model(model): | |
# If PEFT configuration is not provided, create a reference model based on the initial model. | |
self.ref_model = create_reference_model(model) | |
else: | |
# If PEFT is used, the reference model is not needed since the adapter can be disabled | |
# to revert to the initial model. | |
self.ref_model = None | |
# Processing class | |
if processing_class is None: | |
processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path, padding_side="left") | |
# Reward functions | |
if not isinstance(reward_funcs, list): | |
reward_funcs = [reward_funcs] | |
for i, reward_func in enumerate(reward_funcs): | |
if isinstance(reward_func, str): | |
reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained( | |
reward_func, num_labels=1, **model_init_kwargs | |
) | |
self.reward_funcs = reward_funcs | |
# Reward weights | |
if args.reward_weights is not None: | |
if len(args.reward_weights) != len(reward_funcs): | |
raise ValueError( | |
f"Number of reward weights ({len(args.reward_weights)}) must match number of reward " | |
f"functions ({len(reward_funcs)})" | |
) | |
self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32) | |
else: | |
self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32) | |
# Reward processing class | |
if reward_processing_classes is None: | |
reward_processing_classes = [None] * len(reward_funcs) | |
elif not isinstance(reward_processing_classes, list): | |
reward_processing_classes = [reward_processing_classes] | |
else: | |
if len(reward_processing_classes) != len(reward_funcs): | |
raise ValueError("The number of reward processing classes must match the number of reward functions.") | |
for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)): | |
if isinstance(reward_func, PreTrainedModel): | |
if reward_processing_class is None: | |
reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path) | |
if reward_processing_class.pad_token_id is None: | |
reward_processing_class.pad_token = reward_processing_class.eos_token | |
# The reward model computes the reward for the latest non-padded token in the input sequence. | |
# So it's important to set the pad token ID to the padding token ID of the processing class. | |
reward_func.config.pad_token_id = reward_processing_class.pad_token_id | |
reward_processing_classes[i] = reward_processing_class | |
self.reward_processing_classes = reward_processing_classes | |
# Data collator | |
def data_collator(features): # No data collation is needed in GRPO | |
return features | |
# Training arguments | |
self.max_prompt_length = args.max_prompt_length | |
self.max_completion_length = args.max_completion_length # = |o_i| in the GRPO paper | |
self.num_generations = args.num_generations # = G in the GRPO paper | |
self.use_vllm = args.use_vllm | |
self.beta = args.beta | |
# The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the | |
# input tensor associated with the key "input_ids". However, in GRPO, the sampled data does not include the | |
# "input_ids" key. Instead, the available keys is "prompt". As a result, the trainer issues the warning: | |
# "Could not estimate the number of tokens of the input, floating-point operations will not be computed." To | |
# suppress this warning, we set the "estimate_tokens" key in the model's "warnings_issued" dictionary to True. | |
# This acts as a flag to indicate that the warning has already been issued. | |
model.warnings_issued["estimate_tokens"] = True | |
# Initialize the metrics | |
self._metrics = defaultdict(list) | |
self.log_completions = args.log_completions | |
super().__init__( | |
model=model, | |
args=args, | |
data_collator=data_collator, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
processing_class=processing_class, | |
callbacks=callbacks, | |
optimizers=optimizers, | |
) | |
# Check if the per_device_train/eval_batch_size * num processes can be divided by the number of generations | |
num_processes = self.accelerator.num_processes | |
global_batch_size = args.per_device_train_batch_size * num_processes | |
possible_values = [n_gen for n_gen in range(2, global_batch_size + 1) if (global_batch_size) % n_gen == 0] | |
if self.num_generations not in possible_values: | |
raise ValueError( | |
f"The global train batch size ({num_processes} x {args.per_device_train_batch_size}) must be evenly " | |
f"divisible by the number of generations per prompt ({self.num_generations}). Given the current train " | |
f"batch size, the valid values for the number of generations are: {possible_values}." | |
) | |
if self.args.eval_strategy != "no": | |
global_batch_size = args.per_device_eval_batch_size * num_processes | |
possible_values = [n_gen for n_gen in range(2, global_batch_size + 1) if (global_batch_size) % n_gen == 0] | |
if self.num_generations not in possible_values: | |
raise ValueError( | |
f"The global eval batch size ({num_processes} x {args.per_device_eval_batch_size}) must be evenly " | |
f"divisible by the number of generations per prompt ({self.num_generations}). Given the current " | |
f"eval batch size, the valid values for the number of generations are: {possible_values}." | |
) | |
# Ensure each process receives a unique seed to prevent duplicate completions when generating with | |
# transformers if num_generations exceeds per_device_train_batch_size. We could skip it if we use vLLM, but | |
# it's safer to set it in all cases. | |
set_seed(args.seed, device_specific=True) | |
if self.use_vllm: | |
self.llm = model.vllm_engine; self._last_loaded_step = 0; self.sampling_params = SamplingParams( | |
temperature=args.temperature, | |
max_tokens=self.max_completion_length,**getattr(getattr(args, 'vllm_sampling_params', vLLMSamplingParams()), '_set_kwargs', {}),) | |
else: | |
self.generation_config = GenerationConfig( | |
max_new_tokens=self.max_completion_length, | |
do_sample=True, | |
temperature=args.temperature, | |
pad_token_id=processing_class.pad_token_id, | |
) | |
# Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the | |
# model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set | |
# self.model_accepts_loss_kwargs to False to enable scaling. | |
self.model_accepts_loss_kwargs = False | |
# Add tags to the model | |
self.model.add_model_tags(self._tag_names) | |
if self.ref_model is not None: | |
if self.is_deepspeed_enabled: | |
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator) | |
else: | |
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) | |
if args.sync_ref_model: | |
self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator)) | |
for i, reward_func in enumerate(self.reward_funcs): | |
if isinstance(reward_func, PreTrainedModel): | |
self.reward_funcs[i] = self.accelerator.prepare_model(reward_func, evaluation_mode=True) | |
def _set_signature_columns_if_needed(self): | |
# If `self.args.remove_unused_columns` is True, non-signature columns are removed. | |
# By default, this method sets `self._signature_columns` to the model's expected inputs. | |
# In GRPOTrainer, we preprocess data, so using the model's signature columns doesn't work. | |
# Instead, we set them to the columns expected by the `training_step` method, hence the override. | |
if self._signature_columns is None: | |
self._signature_columns = ["prompt"] | |
def _get_train_sampler(self) -> Sampler: | |
# Returns a sampler that ensures each prompt is repeated across multiple processes. This guarantees that | |
# identical prompts are distributed to different GPUs, allowing rewards to be computed and normalized correctly | |
# within each prompt group. Using the same seed across processes ensures consistent prompt assignment, | |
# preventing discrepancies in group formation. | |
return RepeatRandomSampler(self.train_dataset, self.num_generations, seed=self.args.seed) | |
def _get_eval_sampler(self, eval_dataset) -> Sampler: | |
# Returns a sampler that ensures each prompt is repeated across multiple processes. This guarantees that | |
# identical prompts are distributed to different GPUs, allowing rewards to be computed and normalized correctly | |
# within each prompt group. Using the same seed across processes ensures consistent prompt assignment, | |
# preventing discrepancies in group formation. | |
return RepeatRandomSampler(eval_dataset, self.num_generations, seed=self.args.seed) | |
# Get the per-token log probabilities for the completions for the model and the reference model | |
def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep): | |
if os.environ.get('UNSLOTH_USE_NEW_MODEL', '0') == '0': | |
return None # Unsloth efficient GRPO | |
# Otherwise, calculate normally: | |
if not hasattr(self, '_autocast_dtype'): | |
self._autocast_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16 | |
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': self._autocast_dtype = torch.float16 | |
with torch.amp.autocast(device_type = 'cuda', dtype = self._autocast_dtype): | |
# We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded | |
logits = model(input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1).logits | |
logits = logits[:, :-1, :] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred | |
input_ids = input_ids[:, -logits_to_keep:] | |
# For transformers<=4.48, logits_to_keep argument isn't supported, so here we drop logits ourselves. | |
# See https://github.com/huggingface/trl/issues/2770 | |
logits = logits[:, -logits_to_keep:] | |
return logits | |
# return selective_log_softmax(logits, input_ids) # compute logprobs for the input tokens | |
pass | |
def _move_model_to_vllm(self, *args, **kwargs): return None | |
def _prepare_inputs(self, inputs: dict[str, Union[torch.Tensor, Any]]) -> dict[str, Union[torch.Tensor, Any]]: | |
device = self.accelerator.device | |
prompts = [x["prompt"] for x in inputs] | |
prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs] | |
prompt_inputs = self.processing_class( | |
prompts_text, return_tensors="pt", padding=True, padding_side="left", add_special_tokens=False | |
) | |
prompt_inputs = super()._prepare_inputs(prompt_inputs) | |
prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"] | |
if self.max_prompt_length is not None: | |
prompt_ids = prompt_ids[:, -self.max_prompt_length :] | |
prompt_mask = prompt_mask[:, -self.max_prompt_length :] | |
# Generate completions using either vLLM or regular generation | |
if self.args.use_vllm: | |
# First, have main process load weights if needed | |
if self.state.global_step != self._last_loaded_step: | |
self._move_model_to_vllm() | |
self._last_loaded_step = self.state.global_step | |
# Generate completions using vLLM: gather all prompts and use them in a single call in the main process | |
all_prompts_text = gather_object(prompts_text) | |
if self.accelerator.is_main_process: | |
outputs = self.llm.generate(all_prompts_text, sampling_params=self.sampling_params, use_tqdm=False, lora_request = self.model.load_lora('grpo_trainer_lora_model', load_tensors = True)) | |
completion_ids = [out.token_ids for completions in outputs for out in completions.outputs] | |
else: | |
completion_ids = [None] * len(all_prompts_text) | |
# Broadcast the completions from the main process to all processes, ensuring each process receives its | |
# corresponding slice. | |
completion_ids = broadcast_object_list(completion_ids, from_process=0) | |
process_slice = slice( | |
self.accelerator.process_index * len(prompts), | |
(self.accelerator.process_index + 1) * len(prompts), | |
) | |
completion_ids = completion_ids[process_slice] | |
# Pad the completions, and concatenate them with the prompts | |
completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids] | |
completion_ids = pad(completion_ids, padding_value=self.processing_class.pad_token_id) | |
prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1) | |
else: | |
# Regular generation path | |
with unwrap_model_for_generation(self.model, self.accelerator) as unwrapped_model: | |
prompt_completion_ids = unwrapped_model.generate( | |
prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config | |
) | |
# Compute prompt length and extract completion ids | |
prompt_length = prompt_ids.size(1) | |
prompt_ids = prompt_completion_ids[:, :prompt_length] | |
completion_ids = prompt_completion_ids[:, prompt_length:] | |
# Mask everything after the first EOS token | |
is_eos = completion_ids == self.processing_class.eos_token_id | |
eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device) | |
eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)] | |
sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1) | |
completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int() | |
# Concatenate prompt_mask with completion_mask for logit computation | |
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) # (B*G, P+C) | |
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens | |
with torch.inference_mode(), torch.amp.autocast(device_type = 'cuda', dtype = ((torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16) if not torch.is_autocast_enabled('cuda') else nullcontext())if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '0' else torch.float16): | |
if self.ref_model is not None: | |
ref_per_token_logps = self._get_per_token_logps( | |
self.ref_model, prompt_completion_ids, attention_mask, logits_to_keep | |
) | |
else: | |
with self.accelerator.unwrap_model(self.model, keep_fp32_wrapper = False).disable_adapter(): | |
ref_per_token_logps = self._get_per_token_logps( | |
self.model, prompt_completion_ids, attention_mask, logits_to_keep | |
) | |
# Decode the generated completions | |
completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) | |
if is_conversational(inputs[0]): | |
completions = [] | |
for prompt, completion in zip(prompts, completions_text): | |
bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else "" | |
completions.append([{"role": "assistant", "content": bootstrap + completion}]) | |
else: | |
completions = completions_text | |
rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device) | |
for i, (reward_func, reward_processing_class) in enumerate( | |
zip(self.reward_funcs, self.reward_processing_classes) | |
): | |
if isinstance(reward_func, nn.Module): # Module instead of PretrainedModel for compat with compiled models | |
if is_conversational(inputs[0]): | |
messages = [{"messages": p + c} for p, c in zip(prompts, completions)] | |
texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages] | |
else: | |
texts = [p + c for p, c in zip(prompts, completions)] | |
reward_inputs = reward_processing_class( | |
texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False | |
) | |
reward_inputs = super()._prepare_inputs(reward_inputs) | |
with torch.inference_mode(), torch.amp.autocast(device_type = 'cuda', dtype = ((torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16) if not torch.is_autocast_enabled('cuda') else nullcontext())if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '0' else torch.float16): | |
rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] # Shape (B*G,) | |
else: | |
# Repeat all input columns (but "prompt" and "completion") to match the number of generations | |
keys = [key for key in inputs[0] if key not in ["prompt", "completion"]] | |
reward_kwargs = {key: [example[key] for example in inputs] for key in keys} | |
output_reward_func = reward_func(prompts=prompts, completions=completions, **reward_kwargs) | |
rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device) | |
# Gather the reward per function: this part is crucial, because the rewards are normalized per group and the | |
# completions may be distributed across processes | |
rewards_per_func = gather(rewards_per_func) | |
# Apply weights to each reward function's output and sum | |
rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).sum(dim=1) | |
# Compute grouped-wise rewards | |
mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1) | |
std_grouped_rewards = rewards.view(-1, self.num_generations).std(dim=1) | |
# Normalize the rewards to compute the advantages | |
mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0) | |
std_grouped_rewards = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0) | |
advantages = (rewards - mean_grouped_rewards) / (std_grouped_rewards + 1e-4) | |
# Slice to keep only the local part of the data | |
process_slice = slice( | |
self.accelerator.process_index * len(prompts), | |
(self.accelerator.process_index + 1) * len(prompts), | |
) | |
advantages = advantages[process_slice] | |
# Log the metrics | |
reward_per_func = rewards_per_func.mean(0) | |
for i, reward_func in enumerate(self.reward_funcs): | |
if isinstance(reward_func, nn.Module): # Module instead of PretrainedModel for compat with compiled models | |
reward_func_name = reward_func.config._name_or_path.split("/")[-1] | |
else: | |
reward_func_name = reward_func.__name__ | |
self._metrics[f"rewards/{reward_func_name}"].append(reward_per_func[i].item()) | |
self._metrics["reward"].append(rewards.mean().item()) | |
self._metrics["reward_std"].append(std_grouped_rewards.mean().item()) | |
if ( | |
self.log_completions | |
and self.state.global_step % self.args.logging_steps == 0 | |
and "wandb" in self.args.report_to | |
): | |
import pandas as pd | |
# For logging | |
table = { | |
"step": [str(self.state.global_step)] * len(rewards), | |
"prompt": gather_object(prompts_text), | |
"completion": gather_object(completions_text), | |
"reward": rewards.tolist(), | |
} | |
df = pd.DataFrame(table) | |
if wandb.run is not None and self.accelerator.is_main_process: | |
wandb.log({"completions": wandb.Table(dataframe=df)}) | |
return { | |
"prompt_ids": prompt_ids, | |
"prompt_mask": prompt_mask, | |
"completion_ids": completion_ids, | |
"completion_mask": completion_mask, | |
"ref_per_token_logps": ref_per_token_logps, | |
"advantages": advantages, | |
} | |
def compute_loss(self, model, inputs, return_outputs = False, num_items_in_batch = None): | |
if return_outputs: | |
raise ValueError("The GRPOTrainer does not support returning outputs") | |
# Compute the per-token log probabilities for the model | |
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] | |
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"] | |
input_ids = torch.cat([prompt_ids, completion_ids], dim=1) | |
bsz, qlen = input_ids.shape | |
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) | |
# attention_mask = None | |
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens | |
_input_ids = input_ids | |
_logits_to_keep = logits_to_keep | |
per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep) | |
# Compute the KL divergence between the model and the reference model | |
ref_per_token_logps = inputs["ref_per_token_logps"] | |
# per_token_kl = torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1 | |
# x - x.detach() allows for preserving gradients from x | |
advantages = inputs["advantages"] | |
# per_token_loss = torch.exp(per_token_logps - per_token_logps.detach()) * advantages.unsqueeze(1) | |
# per_token_loss = -(per_token_loss - self.beta * per_token_kl) | |
# loss = ((per_token_loss * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean() | |
input_ids = input_ids[:, -logits_to_keep:] | |
if per_token_logps is not None: | |
loss, completion_length, mean_kl = grpo_compute_loss_slow( | |
ref_per_token_logps, per_token_logps, input_ids, completion_mask, self.beta, advantages, | |
) | |
else: | |
loss, completion_length, mean_kl = grpo_accumulated_loss( | |
self, _input_ids, logits_to_keep, completion_mask, advantages, | |
n_chunks = self.args.unsloth_num_chunks, | |
) | |
# Log the metrics | |
# completion_length = self.accelerator.gather_for_metrics(completion_mask.sum(1)).float().mean().item() | |
# mean_kl = ((per_token_kl * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean() | |
# self._metrics["kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item()) | |
if "train" in self._metrics: | |
mode = "eval" if self.control.should_evaluate else "train" | |
self._metrics[mode]["completion_length"].append(completion_length.item()) | |
self._metrics[mode]["kl"].append(mean_kl.item()) | |
else: | |
self._metrics["completion_length"].append(completion_length.item()) | |
self._metrics["kl"].append(mean_kl.item()) | |
return loss | |
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None): | |
inputs = self._prepare_inputs(inputs) | |
with torch.no_grad(): | |
with self.compute_loss_context_manager(): | |
loss = self.compute_loss(model, inputs) | |
loss = loss.mean().detach() | |
return loss, None, None | |
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: | |
metrics = {key: sum(val) / len(val) for key, val in self._metrics.items()} # average the metrics | |
# This method can be called both in training and evaluation. When called in evaluation, the keys in `logs` | |
# start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format. | |
if next(iter(logs.keys())).startswith("eval_"): | |
metrics = {f"eval_{key}": val for key, val in metrics.items()} | |
logs = {**logs, **metrics} | |
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"): | |
super().log(logs, start_time) | |
else: # transformers<=4.46 | |
super().log(logs) | |
self._metrics.clear() | |
def create_model_card( | |
self, | |
model_name: Optional[str] = None, | |
dataset_name: Optional[str] = None, | |
tags: Union[str, list[str], None] = None, | |
): | |
""" | |
Creates a draft of a model card using the information available to the `Trainer`. | |
Args: | |
model_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the model. | |
dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the dataset used for training. | |
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
Tags to be associated with the model card. | |
""" | |
if not self.is_world_process_zero(): | |
return | |
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
base_model = self.model.config._name_or_path | |
else: | |
base_model = None | |
tags = tags or [] | |
if isinstance(tags, str): | |
tags = [tags] | |
if hasattr(self.model.config, "unsloth_version"): | |
tags.append("unsloth") | |
citation = textwrap.dedent( | |
"""\ | |
@article{zhihong2024deepseekmath, | |
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, | |
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, | |
year = 2024, | |
eprint = {arXiv:2402.03300}, | |
} | |
""" | |
) | |
model_card = generate_model_card( | |
base_model=base_model, | |
model_name=model_name, | |
hub_model_id=self.hub_model_id, | |
dataset_name=dataset_name, | |
tags=tags, | |
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
comet_url=get_comet_experiment_url(), | |
trainer_name="GRPO", | |
trainer_citation=citation, | |
paper_title="DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models", | |
paper_id="2402.03300", | |
) | |
model_card.save(os.path.join(self.args.output_dir, "README.md")) | |
class UnslothGRPOTrainer(_UnslothGRPOTrainer): | |
""" | |
Trainer for the Group Relative Policy Optimization (GRPO) method. This algorithm was initially proposed in the | |
paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). | |
Example: | |
```python | |
from datasets import load_dataset | |
from trl import GRPOTrainer | |
dataset = load_dataset("trl-lib/tldr", split="train") | |
def reward_func(completions, **kwargs): | |
# Dummy reward function that rewards completions with more unique letters. | |
return [float(len(set(completion))) for completion in completions] | |
trainer = GRPOTrainer( | |
model="Qwen/Qwen2-0.5B-Instruct", | |
reward_funcs=reward_func, | |
train_dataset=dataset, | |
) | |
trainer.train() | |
``` | |
Args: | |
model (`Union[str, PreTrainedModel]`): | |
Model to be trained. Can be either: | |
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or | |
a path to a *directory* containing model weights saved using | |
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is | |
loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments | |
in `args.model_init_kwargs`. | |
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. | |
reward_funcs (`Union[RewardFunc, list[RewardFunc]]`): | |
Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward | |
functions with the prompts and completions and sum the rewards. Can be either: | |
- A single reward function, such as: | |
- A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a | |
path to a *directory* containing model weights saved using | |
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded | |
using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the | |
keyword arguments in `args.model_init_kwargs`. | |
- A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported. | |
- A custom reward function: The function is provided with the prompts and the generated completions, | |
plus any additional columns in the dataset. It should return a list of rewards. For more details, see | |
[Using a custom reward function](#using-a-custom-reward-function). | |
- A list of reward functions, where each item can independently be any of the above types. Mixing different | |
types within the list (e.g., a string model ID and a custom reward function) is allowed. | |
args ([`GRPOConfig`], *optional*, defaults to `None`): | |
Configuration for this trainer. If `None`, a default configuration is used. | |
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]): | |
Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is | |
ignored. The format of the samples can be either: | |
- [Standard](dataset_formats#standard): Each sample contains plain text. | |
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role | |
and content). | |
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`): | |
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`. | |
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`): | |
Processing class used to process the data. The padding side must be set to "left". If `None`, the | |
processing class is loaded from the model's name with [`~transformers.AutoTokenizer.from_pretrained`]. | |
reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*, defaults to `None`): | |
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either: | |
- A single processing class: Used when `reward_funcs` contains only one reward function. | |
- A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`. | |
If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is | |
`None`, the tokenizer for the model is automatically loaded using [`~transformers.AutoTokenizer.from_pretrained`]. | |
For elements in `reward_funcs` that are custom reward functions (not [`~transformers.PreTrainedModel`]), | |
the corresponding entries in `reward_processing_classes` are ignored. | |
callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`): | |
List of callbacks to customize the training loop. Will add those to the list of default callbacks | |
detailed in [here](https://huggingface.co/docs/transformers/main_classes/callback). | |
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`] | |
method. | |
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`): | |
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your | |
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`. | |
peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`): | |
PEFT configuration used to wrap the model. If `None`, the model is not wrapped. | |
""" | |
def __init__( | |
self, | |
model, | |
reward_funcs, | |
args = None, | |
train_dataset = None, | |
eval_dataset = None, | |
processing_class = None, | |
reward_processing_classes = None, | |
callbacks = None, | |
peft_config = None, | |
**kwargs | |
): | |
if args is None: args = UnslothGRPOConfig() | |
use_bf16 = getattr(args, 'bf16', False) | |
use_fp16 = getattr(args, 'fp16', False) | |
force_float32 = False | |
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': | |
print('Unsloth: Switching to float32 training since model cannot work with float16') | |
force_float32 = True | |
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') | |
dtype = getattr(model.config, 'torch_dtype', None) | |
if dtype is None: dtype = model.get_input_embeddings().dtype | |
from unsloth_zoo.utils import _get_dtype | |
dtype = _get_dtype(dtype) | |
float16 = dtype == torch.float16 | |
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') | |
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') | |
if force_float32: | |
args.fp16 = False | |
args.bf16 = False | |
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' | |
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': | |
args.fp16 = float16 | |
args.bf16 = not float16 | |
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' | |
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': | |
args.eval_strategy = 'steps' | |
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 | |
ga_steps = getattr(args, 'gradient_accumulation_steps', None) | |
if ga_steps is not None and ga_steps > 1: | |
from transformers import __version__ as transformers_version | |
if Version(transformers_version) <= Version('4.45.2'): | |
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' | |
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') | |
if getattr(args, 'eval_strategy', 'no') != 'no': | |
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) | |
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size | |
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps | |
fp16_full_eval = getattr(args, 'fp16_full_eval', False) | |
bf16_full_eval = getattr(args, 'bf16_full_eval', False) | |
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True | |
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False | |
if force_float32: | |
args.bf16_full_eval = False | |
args.fp16_full_eval = False | |
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': | |
args.bf16_full_eval = True | |
args.fp16_full_eval = False | |
elif not bf16_full_eval and not fp16_full_eval: | |
args.bf16_full_eval = args.bf16 | |
args.fp16_full_eval = args.fp16 | |
_output_logits = False | |
if locals().get('compute_metrics', None) is not None: _output_logits = True | |
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True | |
if _output_logits: | |
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' | |
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): | |
pass | |
else: | |
model_max_seq_length = getattr(model, 'max_seq_length', None) | |
args_max_seq_length = getattr(args, 'max_seq_length', None) | |
if args_max_seq_length is None and model_max_seq_length is not None: | |
max_seq_length = model.max_seq_length | |
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length | |
if model is not None and hasattr(model, 'for_training'): | |
model.for_training() | |
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' | |
if 'processing_class' in locals(): | |
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' | |
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' | |
other_metrics = [] | |
if not isinstance(reward_funcs, list): _reward_funcs = [reward_funcs] | |
else: _reward_funcs = reward_funcs | |
for reward_func in _reward_funcs: | |
try: | |
reward_func_name = reward_func.__name__ | |
other_metrics.append(f'rewards/{reward_func_name}') | |
except: pass | |
from unsloth_zoo.logging_utils import PatchRLStatistics | |
PatchRLStatistics('grpo_trainer', other_metrics) | |
super().__init__( | |
model = model, | |
reward_funcs = reward_funcs, | |
args = args, | |
train_dataset = train_dataset, | |
eval_dataset = eval_dataset, | |
processing_class = processing_class, | |
reward_processing_classes = reward_processing_classes, | |
callbacks = callbacks, | |
peft_config = peft_config,**kwargs) | |
if hasattr(self, 'neftune_hook_handle'): | |
self.neftune_hook_handle.remove() | |
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle | |
if getattr(args, 'neftune_noise_alpha', None) is not None: | |
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha | |
pass | |
pass | |