Spaces:
Sleeping
Sleeping
Create sql_generator.py
Browse files- sql_generator.py +84 -0
sql_generator.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import requests
|
4 |
+
from config import ACCESS_TOKEN, SHOP_NAME
|
5 |
+
|
6 |
+
class SQLGenerator:
|
7 |
+
def __init__(self):
|
8 |
+
self.model_name = "premai-io/prem-1B-SQL"
|
9 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
10 |
+
self.model = AutoModelForCausalLM.from_pretrained(self.model_name)
|
11 |
+
|
12 |
+
def generate_query(self, natural_language_query):
|
13 |
+
schema_info = """
|
14 |
+
CREATE TABLE products (
|
15 |
+
id DECIMAL(8,2) PRIMARY KEY,
|
16 |
+
title VARCHAR(255),
|
17 |
+
body_html VARCHAR(255),
|
18 |
+
vendor VARCHAR(255),
|
19 |
+
product_type VARCHAR(255),
|
20 |
+
created_at VARCHAR(255),
|
21 |
+
handle VARCHAR(255),
|
22 |
+
updated_at DATE,
|
23 |
+
published_at VARCHAR(255),
|
24 |
+
template_suffix VARCHAR(255),
|
25 |
+
published_scope VARCHAR(255),
|
26 |
+
tags VARCHAR(255),
|
27 |
+
status VARCHAR(255),
|
28 |
+
admin_graphql_api_id DECIMAL(8,2),
|
29 |
+
variants VARCHAR(255),
|
30 |
+
options VARCHAR(255),
|
31 |
+
images VARCHAR(255),
|
32 |
+
image VARCHAR(255)
|
33 |
+
);
|
34 |
+
"""
|
35 |
+
|
36 |
+
prompt = f"""### Task: Generate a SQL query to answer the following question.
|
37 |
+
### Database Schema:
|
38 |
+
{schema_info}
|
39 |
+
### Question: {natural_language_query}
|
40 |
+
### SQL Query:"""
|
41 |
+
|
42 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(self.model.device)
|
43 |
+
outputs = self.model.generate(
|
44 |
+
inputs["input_ids"],
|
45 |
+
max_length=256,
|
46 |
+
do_sample=True, # Enable sampling to use temperature
|
47 |
+
num_return_sequences=1,
|
48 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
49 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
50 |
+
temperature=0.7, # Allow temperature to affect output
|
51 |
+
top_k=50 # Consider top k predictions for variability
|
52 |
+
)
|
53 |
+
|
54 |
+
generated_query = self.tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
55 |
+
return generated_query # Return the generated SQL query
|
56 |
+
|
57 |
+
def fetch_shopify_data(self, endpoint):
|
58 |
+
headers = {
|
59 |
+
'X-Shopify-Access-Token': ACCESS_TOKEN,
|
60 |
+
'Content-Type': 'application/json'
|
61 |
+
}
|
62 |
+
url = f"https://{SHOP_NAME}/admin/api/2023-10/{endpoint}.json"
|
63 |
+
response = requests.get(url, headers=headers)
|
64 |
+
|
65 |
+
if response.status_code == 200:
|
66 |
+
return response.json()
|
67 |
+
else:
|
68 |
+
print(f"Error fetching {endpoint}: {response.status_code} - {response.text}")
|
69 |
+
return None
|
70 |
+
|
71 |
+
# Example of how to use the SQLGenerator class
|
72 |
+
if __name__ == "__main__":
|
73 |
+
sql_generator = SQLGenerator()
|
74 |
+
|
75 |
+
# Example natural language query
|
76 |
+
natural_language_query = "Show me shirts with red color"
|
77 |
+
|
78 |
+
# Generate SQL query
|
79 |
+
sql_query = sql_generator.generate_query(natural_language_query)
|
80 |
+
print(f"Generated SQL Query: {sql_query}")
|
81 |
+
|
82 |
+
# Fetch data from Shopify (example endpoint)
|
83 |
+
shopify_data = sql_generator.fetch_shopify_data("products")
|
84 |
+
print(f"Shopify Data: {shopify_data}")
|