import os from typing import Optional import pandas as pd import pytorch_lightning as pl import torch from PIL import Image from torch.utils.data import Dataset, DataLoader from torch.nn.utils.rnn import pad_sequence from torchvision.transforms import Compose, Resize, ToTensor, Grayscale, RandomRotation, RandomApply, \ GaussianBlur, CenterCrop class KaggleHandwrittenNames(Dataset): def __init__(self, data, transforms, label_to_index, img_path): self.data = data self.transforms = transforms self.img_path = img_path self.label_to_index = label_to_index def __len__(self): return self.data.shape[0] def __getitem__(self, index): row = self.data.iloc[index] file_name = row['FILENAME'] image_label = row['IDENTITY'] the_image = Image.open(os.path.join(self.img_path, file_name)) transformed_image = self.transforms(the_image) target_len = len(image_label) label_chars = list(image_label) image_label = torch.tensor([self.label_to_index[char] for char in label_chars]) return { 'transformed_image': transformed_image, 'label': image_label, 'target_len': target_len } class KaggleHandwritingDataModule(pl.LightningDataModule): def __init__(self, train_data, val_data, hparams, label_to_index): super().__init__() self.train_data = train_data self.val_data = val_data self.train_batch_size = hparams['train_batch_size'] self.val_batch_size = hparams['val_batch_size'] self.transforms = Compose([Resize((hparams['input_height'], hparams['input_width'])), Grayscale(), ToTensor()]) applier1 = RandomApply(transforms=[RandomRotation(10), GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5))], p=0.5) applier2 = RandomApply(transforms=[CenterCrop((hparams['input_height'] - 1, hparams['input_width'] - 2))], p=0.5) self.train_transforms = Compose([applier2, Resize((hparams['input_height'], hparams['input_width'])), Grayscale(), applier1, ToTensor()]) self.train_img_path = hparams['train_img_path'] self.val_img_path = hparams['val_img_path'] self.label_to_index = label_to_index def setup(self, stage: Optional[str] = None): if stage == 'fit' or stage is None: self.train = KaggleHandwrittenNames(self.train_data, self.train_transforms, self.label_to_index, self.train_img_path) self.val = KaggleHandwrittenNames(self.val_data, self.transforms, self.label_to_index, self.val_img_path) def custom_collate(data): ''' To handle variable max seq length batch size ''' transformed_images = [] labels = [] target_lens = [] for d in data: transformed_images.append(d['transformed_image']) labels.append(d['label']) target_lens.append(d['target_len']) batch_labels = pad_sequence(labels, batch_first=True, padding_value=-1) transformed_images = torch.stack(transformed_images) target_lens = torch.tensor(target_lens) return { 'transformed_images': transformed_images, 'labels': batch_labels, 'target_lens': target_lens } def train_dataloader(self): return DataLoader(self.train, batch_size=self.train_batch_size, shuffle=True, pin_memory=True, num_workers=8, collate_fn=KaggleHandwritingDataModule.custom_collate) def val_dataloader(self): return DataLoader(self.val, batch_size=self.val_batch_size, shuffle=False, pin_memory=True, num_workers=8, collate_fn=KaggleHandwritingDataModule.custom_collate) def test_kaggle_handwritting(): pl.seed_everything(267) hparams = { 'train_img_path': './data/kaggle-handwriting-recognition/train_v2/train/', 'lr': 1e-3, 'val_img_path': './data/kaggle-handwriting-recognition/validation_v2/validation/', 'test_img_path': './data/kaggle-handwriting-recognition/test_v2/test/', 'data_path': './data/kaggle-handwriting-recognition', 'gru_input_size': 256, 'train_batch_size': 64, 'val_batch_size': 256, 'input_height': 36, 'input_width': 324, 'gru_hidden_size': 128, 'gru_num_layers': 1, 'num_classes': 28 } label_to_index = {' ': 0, '-': 1, 'A': 2, 'B': 3, 'C': 4, 'D': 5, 'E': 6, 'F': 7, 'G': 8, 'H': 9, 'I': 10, 'J': 11, 'K': 12, 'L': 13, 'M': 14, 'N': 15, 'O': 16, 'P': 17, 'Q': 18, 'R': 19, 'S': 20, 'T': 21, 'U': 22, 'V': 23, 'W': 24, 'X': 25, 'Y': 26, 'Z': 27} train_df = pd.read_csv(os.path.join(hparams['data_path'], 'train_new.csv')) train_df = train_df[train_df.word_type == 'normal_word'] train_df = train_df.sample(frac=1).reset_index(drop=True) val_df = pd.read_csv(os.path.join(hparams['data_path'], 'val_new.csv')) val_df = val_df[val_df.word_type == 'normal_word'] val_df = val_df.sample(frac=1).reset_index(drop=True) sample_module = KaggleHandwritingDataModule(train_df, val_df, hparams, label_to_index) sample_module.setup() sample_train_module = sample_module.train_dataloader() sample_val_module = sample_module.val_dataloader() sample_train_batch = next(iter(sample_train_module)) sample_val_batch = next(iter(sample_val_module)) print(sample_train_batch['transformed_images'].shape) print(sample_val_batch['transformed_images'].shape) print(sample_train_batch['labels'].shape) print(sample_val_batch['labels'].shape) print(sample_train_batch['target_lens'].shape) print(sample_val_batch['target_lens'].shape) if __name__ == '__main__': test_kaggle_handwritting()