File size: 5,832 Bytes
2daf4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
from typing import Optional

import pandas as pd
import pytorch_lightning as pl
import torch
from PIL import Image

from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence
from torchvision.transforms import Compose, Resize, ToTensor, Grayscale, RandomRotation, RandomApply, \
    GaussianBlur, CenterCrop


class KaggleHandwrittenNames(Dataset):
    def __init__(self, data, transforms, label_to_index, img_path):
        self.data = data
        self.transforms = transforms
        self.img_path = img_path
        self.label_to_index = label_to_index

    def __len__(self):
        return self.data.shape[0]

    def __getitem__(self, index):
        row = self.data.iloc[index]
        file_name = row['FILENAME']
        image_label = row['IDENTITY']
        the_image = Image.open(os.path.join(self.img_path, file_name))
        transformed_image = self.transforms(the_image)
        target_len = len(image_label)
        label_chars = list(image_label)
        image_label = torch.tensor([self.label_to_index[char] for char in label_chars])
        return {
            'transformed_image': transformed_image,
            'label': image_label,
            'target_len': target_len
        }


class KaggleHandwritingDataModule(pl.LightningDataModule):
    def __init__(self, train_data, val_data, hparams, label_to_index):
        super().__init__()
        self.train_data = train_data
        self.val_data = val_data
        self.train_batch_size = hparams['train_batch_size']
        self.val_batch_size = hparams['val_batch_size']
        self.transforms = Compose([Resize((hparams['input_height'], hparams['input_width'])), Grayscale(),
                                   ToTensor()])
        applier1 = RandomApply(transforms=[RandomRotation(10), GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5))], p=0.5)
        applier2 = RandomApply(transforms=[CenterCrop((hparams['input_height'] - 1, hparams['input_width'] - 2))], p=0.5)
        self.train_transforms = Compose([applier2, Resize((hparams['input_height'], hparams['input_width'])), Grayscale(),
                                   applier1, ToTensor()])
        self.train_img_path = hparams['train_img_path']
        self.val_img_path = hparams['val_img_path']
        self.label_to_index = label_to_index

    def setup(self, stage: Optional[str] = None):
        if stage == 'fit' or stage is None:
            self.train = KaggleHandwrittenNames(self.train_data, self.train_transforms, self.label_to_index, self.train_img_path)
            self.val = KaggleHandwrittenNames(self.val_data, self.transforms, self.label_to_index, self.val_img_path)

    def custom_collate(data):
        '''
        To handle variable max seq length batch size
        '''
        transformed_images = []
        labels = []
        target_lens = []
        for d in data:
            transformed_images.append(d['transformed_image'])
            labels.append(d['label'])
            target_lens.append(d['target_len'])
        batch_labels = pad_sequence(labels, batch_first=True, padding_value=-1)
        transformed_images = torch.stack(transformed_images)
        target_lens = torch.tensor(target_lens)
        return {
            'transformed_images': transformed_images,
            'labels': batch_labels,
            'target_lens': target_lens
        }

    def train_dataloader(self):
        return DataLoader(self.train, batch_size=self.train_batch_size, shuffle=True, pin_memory=True,
                          num_workers=8, collate_fn=KaggleHandwritingDataModule.custom_collate)

    def val_dataloader(self):
        return DataLoader(self.val, batch_size=self.val_batch_size, shuffle=False, pin_memory=True,
                          num_workers=8, collate_fn=KaggleHandwritingDataModule.custom_collate)


def test_kaggle_handwritting():
    pl.seed_everything(267)
    hparams = {
        'train_img_path': './data/kaggle-handwriting-recognition/train_v2/train/',
        'lr': 1e-3, 'val_img_path': './data/kaggle-handwriting-recognition/validation_v2/validation/',
        'test_img_path': './data/kaggle-handwriting-recognition/test_v2/test/',
        'data_path': './data/kaggle-handwriting-recognition', 'gru_input_size': 256,
        'train_batch_size': 64, 'val_batch_size': 256, 'input_height': 36, 'input_width': 324, 'gru_hidden_size': 128,
        'gru_num_layers': 1, 'num_classes': 28
    }
    label_to_index = {' ': 0, '-': 1, 'A': 2, 'B': 3, 'C': 4, 'D': 5, 'E': 6, 'F': 7, 'G': 8, 'H': 9, 'I': 10, 'J': 11,
                      'K': 12, 'L': 13, 'M': 14, 'N': 15, 'O': 16, 'P': 17, 'Q': 18, 'R': 19, 'S': 20, 'T': 21, 'U': 22,
                      'V': 23, 'W': 24, 'X': 25, 'Y': 26, 'Z': 27}

    train_df = pd.read_csv(os.path.join(hparams['data_path'], 'train_new.csv'))
    train_df = train_df[train_df.word_type == 'normal_word']
    train_df = train_df.sample(frac=1).reset_index(drop=True)
    val_df = pd.read_csv(os.path.join(hparams['data_path'], 'val_new.csv'))
    val_df = val_df[val_df.word_type == 'normal_word']
    val_df = val_df.sample(frac=1).reset_index(drop=True)
    sample_module = KaggleHandwritingDataModule(train_df, val_df, hparams, label_to_index)
    sample_module.setup()
    sample_train_module = sample_module.train_dataloader()
    sample_val_module = sample_module.val_dataloader()
    sample_train_batch = next(iter(sample_train_module))
    sample_val_batch = next(iter(sample_val_module))
    print(sample_train_batch['transformed_images'].shape)
    print(sample_val_batch['transformed_images'].shape)
    print(sample_train_batch['labels'].shape)
    print(sample_val_batch['labels'].shape)
    print(sample_train_batch['target_lens'].shape)
    print(sample_val_batch['target_lens'].shape)


if __name__ == '__main__':
    test_kaggle_handwritting()