Spaces:
Runtime error
Runtime error
File size: 9,954 Bytes
2daf4c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import os
from PIL import Image
import torch
import torch.nn as nn
from ctc_decoder import best_path, beam_search
import pytorch_lightning as pl
from torchmetrics import CharErrorRate
from torchvision.transforms import Compose, Resize, Grayscale, ToTensor
from torchvision.utils import make_grid
from modelling import HandwritingRecognition
class HandwritingRecogTrainModule(pl.LightningModule):
def __init__(self, hparams, index_to_labels, label_to_index):
super().__init__()
# save_hyperparameters saves the parameters in the signature
self.save_hyperparameters()
self.chars = ' -ABCDEFGHIJKLMNOPQRSTUVWXYZ'
self.model = HandwritingRecognition(self.hparams['hparams']['gru_input_size'], self.hparams['hparams']['gru_hidden_size'],
self.hparams['hparams']['gru_num_layers'], self.hparams['hparams']['num_classes'])
self.criterion = nn.CTCLoss(blank=28, zero_infinity=True, reduction='mean')
self.transforms = Compose([Resize((self.hparams['hparams']['input_height'], self.hparams['hparams']['input_width'])), Grayscale(),
ToTensor()])
self.char_metric = CharErrorRate()
def forward(self, the_image):
out = self.model(the_image)
out = out.permute(1, 0, 2)
out = torch.exp(out)
return out
def intermediate_operation(self, batch):
transformed_images = batch['transformed_images']
labels = batch['labels']
target_lens = batch['target_lens']
output = self.model(transformed_images)
N = output.size(1)
input_length = output.size(0)
input_lengths = torch.full(size=(N,), fill_value=input_length, dtype=torch.int32)
loss = self.criterion(output, labels, input_lengths, target_lens)
return loss, output
def training_step(self, batch, batch_idx):
loss, preds = self.intermediate_operation(batch)
with torch.inference_mode():
preds = preds.permute(1, 0, 2)
preds = torch.exp(preds)
ground_truth = batch['labels']
target_lens = batch['target_lens']
ground_truth = ground_truth.cpu().detach().numpy()
target_lens = target_lens.cpu().detach().numpy()
preds = preds.cpu().detach().numpy()
actual_predictions = []
for pred in preds:
actual_predictions.append(best_path(pred, self.chars))
exact_matches = 0
actual_ground_truths = []
for i, predicted_string in enumerate(actual_predictions):
ground_truth_sample = ground_truth[i][0:target_lens[i]]
ground_truth_string = [self.hparams.index_to_labels[index] for index in ground_truth_sample]
ground_truth_string = ''.join(ground_truth_string)
actual_ground_truths.append(ground_truth_string)
if predicted_string == ground_truth_string:
exact_matches += 1
exact_match_percentage = (exact_matches / len(preds)) * 100
char_error_rate = self.char_metric(actual_predictions, actual_ground_truths)
self.log_dict({'train-loss': loss, 'train-exact-match': exact_match_percentage,
'train-char_error_rate': char_error_rate}, prog_bar=True, on_epoch=True, on_step=False)
return loss
def validation_step(self, batch, batch_idx):
loss, preds = self.intermediate_operation(batch)
preds = preds.permute(1, 0, 2)
preds = torch.exp(preds)
ground_truth = batch['labels']
target_lens = batch['target_lens']
ground_truth = ground_truth.cpu().detach().numpy()
target_lens = target_lens.cpu().detach().numpy()
preds = preds.cpu().detach().numpy()
actual_predictions = []
for pred in preds:
actual_predictions.append(best_path(pred, self.chars))
exact_matches = 0
actual_ground_truths = []
for i, predicted_string in enumerate(actual_predictions):
ground_truth_sample = ground_truth[i][0:target_lens[i]]
ground_truth_string = [self.hparams.index_to_labels[index] for index in ground_truth_sample]
ground_truth_string = ''.join(ground_truth_string)
actual_ground_truths.append(ground_truth_string)
if predicted_string == ground_truth_string:
exact_matches += 1
char_error_rate = self.char_metric(actual_predictions, actual_ground_truths)
exact_match_percentage = (exact_matches / len(preds)) * 100
if batch_idx % self.trainer.num_val_batches[0] == 0:
small_batch = batch['transformed_images'][0:16]
small_batch_predictions = actual_predictions[0:16]
captions = small_batch_predictions
sampled_img_grid = make_grid(small_batch)
self.logger.log_image('Sample_Images', [sampled_img_grid], caption=[str(captions)])
self.log_dict({'val-loss': loss, 'val-exact-match': exact_match_percentage,
'val-char-error-rate': char_error_rate}, prog_bar=False, on_epoch=True, on_step=False)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.hparams['hparams']['lr'])
def convert_to_torchscript(trained_path):
hparams = {
'train_img_path': './data/kaggle-handwriting-recognition/train_v2/train/',
'lr': 1e-3, 'val_img_path': './data/kaggle-handwriting-recognition/validation_v2/validation/',
'test_img_path': './data/kaggle-handwriting-recognition/test_v2/test/',
'data_path': './data/kaggle-handwriting-recognition', 'gru_input_size': 256,
'train_batch_size': 64, 'val_batch_size': 256, 'input_height': 36, 'input_width': 324, 'gru_hidden_size': 128,
'gru_num_layers': 1, 'num_classes': 28
}
index_to_labels = {0: ' ', 1: '-', 2: 'A', 3: 'B', 4: 'C', 5: 'D', 6: 'E', 7: 'F', 8: 'G', 9: 'H', 10: 'I',
11: 'J', 12: 'K', 13: 'L', 14: 'M', 15: 'N', 16: 'O', 17: 'P', 18: 'Q', 19: 'R', 20: 'S',
21: 'T', 22: 'U', 23: 'V', 24: 'W', 25: 'X', 26: 'Y', 27: 'Z'}
label_to_index = {' ': 0, '-': 1, 'A': 2, 'B': 3, 'C': 4, 'D': 5, 'E': 6, 'F': 7, 'G': 8, 'H': 9, 'I': 10, 'J': 11,
'K': 12, 'L': 13, 'M': 14, 'N': 15, 'O': 16, 'P': 17, 'Q': 18, 'R': 19, 'S': 20, 'T': 21, 'U': 22,
'V': 23, 'W': 24, 'X': 25, 'Y': 26, 'Z': 27}
model = HandwritingRecogTrainModule(hparams, index_to_labels, label_to_index)
script = model.to_torchscript()
print("The script:", script)
torch.jit.save(script, './final-models/torchscript-model/handwritten-name_new.pt')
def test_model():
pl.seed_everything(2564)
hparams = {
'train_img_path': './data/kaggle-handwriting-recognition/train_v2/train/',
'lr': 1e-3, 'val_img_path': './data/kaggle-handwriting-recognition/validation_v2/validation/',
'test_img_path': './data/kaggle-handwriting-recognition/test_v2/test/',
'data_path': './data/kaggle-handwriting-recognition', 'gru_input_size': 256,
'train_batch_size': 64, 'val_batch_size': 256, 'input_height': 36, 'input_width': 324, 'gru_hidden_size': 128,
'gru_num_layers': 1, 'num_classes': 28
}
index_to_labels = {0: ' ', 1: '-', 2: 'A', 3: 'B', 4: 'C', 5: 'D', 6: 'E', 7: 'F', 8: 'G', 9: 'H', 10: 'I',
11: 'J', 12: 'K', 13: 'L', 14: 'M', 15: 'N', 16: 'O', 17: 'P', 18: 'Q', 19: 'R', 20: 'S',
21: 'T', 22: 'U', 23: 'V', 24: 'W', 25: 'X', 26: 'Y', 27: 'Z'}
label_to_index = {' ': 0, '-': 1, 'A': 2, 'B': 3, 'C': 4, 'D': 5, 'E': 6, 'F': 7, 'G': 8, 'H': 9, 'I': 10, 'J': 11,
'K': 12, 'L': 13, 'M': 14, 'N': 15, 'O': 16, 'P': 17, 'Q': 18, 'R': 19, 'S': 20, 'T': 21, 'U': 22,
'V': 23, 'W': 24, 'X': 25, 'Y': 26, 'Z': 27}
model = HandwritingRecogTrainModule.load_from_checkpoint(
'./lightning_logs/CNNR_run_new_version/108xqa9y/checkpoints/'
'epoch=21-val-loss=0.206-val-exact-match=81.46109771728516-val-char-error-rate=0.04727236181497574.ckpt')
input_image = Image.open(os.path.join(hparams['train_img_path'], 'TRAIN_96628.jpg'))
output = model(input_image)
print(output)
def test_inference():
transforms = Compose([Resize((36, 324)), Grayscale(), ToTensor()])
input_image = Image.open(os.path.join('./data/kaggle-handwriting-recognition/train_v2/train/', 'TRAIN_96628.jpg'))
transformed_image = transforms(input_image)
# path = './lightning_logs/CNNR_run_64_2grulayers_0.3dropout/3182ng3f/checkpoints'
# model_weights = 'epoch=47-val-loss=0.190-val-exact-match=83.1511001586914-val-char-error-rate=0.042957037687301636.ckpt'
# trained_path = os.path.join(path, model_weights)
# model = HandwritingRecogTrainModule.load_from_checkpoint(trained_path)
# transformed_image = torch.unsqueeze(transformed_image, 0)
# model.eval()
# out = model(transformed_image)
script_path = './final-models/torchscript-model/handwritten-name_new.pt'
scripted_module = torch.jit.load(script_path)
out = scripted_module(transformed_image)
print("The final out shape:", out.shape)
print("The final out is :", out)
out = out.cpu().detach().numpy()
chars = ' -ABCDEFGHIJKLMNOPQRSTUVWXYZ'
for sample in out:
predicted_string = beam_search(sample, chars, beam_width=2)
print(predicted_string)
def test_convert_to_torchscript():
path = './lightning_logs/CNNR_run_new_version/108xqa9y/checkpoints/'
model_weights = 'epoch=21-val-loss=0.206-val-exact-match=81.46109771728516-val-char-error-rate=0.04727236181497574.ckpt'
trained_path = os.path.join(path, model_weights)
convert_to_torchscript(trained_path)
if __name__ == '__main__':
test_inference()
|