Spaces:
Runtime error
Runtime error
Removed print statements from model file
Browse files
models/GroundingDINO/groundingdino.py
CHANGED
|
@@ -328,7 +328,6 @@ class GroundingDINO(nn.Module):
|
|
| 328 |
)
|
| 329 |
|
| 330 |
tokenized["input_ids"] = torch.stack(new_input_ids)
|
| 331 |
-
print(tokenized["input_ids"])
|
| 332 |
|
| 333 |
(
|
| 334 |
text_self_attention_masks,
|
|
@@ -398,7 +397,6 @@ class GroundingDINO(nn.Module):
|
|
| 398 |
dictionnaries containing the two above keys for each decoder layer.
|
| 399 |
"""
|
| 400 |
|
| 401 |
-
print("inside forward")
|
| 402 |
if targets is None:
|
| 403 |
captions = kw["captions"]
|
| 404 |
else:
|
|
@@ -406,11 +404,9 @@ class GroundingDINO(nn.Module):
|
|
| 406 |
|
| 407 |
# encoder texts
|
| 408 |
|
| 409 |
-
print("moving text to device")
|
| 410 |
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
|
| 411 |
samples.device
|
| 412 |
)
|
| 413 |
-
print("done moving text to device")
|
| 414 |
|
| 415 |
one_hot_token = tokenized
|
| 416 |
|
|
@@ -479,8 +475,6 @@ class GroundingDINO(nn.Module):
|
|
| 479 |
# Get visual exemplar tokens.
|
| 480 |
bs = len(exemplars)
|
| 481 |
num_exemplars = exemplars[0].shape[0]
|
| 482 |
-
print(exemplars)
|
| 483 |
-
print(num_exemplars)
|
| 484 |
if num_exemplars > 0:
|
| 485 |
exemplar_tokens = (
|
| 486 |
roi_align(
|
|
|
|
| 328 |
)
|
| 329 |
|
| 330 |
tokenized["input_ids"] = torch.stack(new_input_ids)
|
|
|
|
| 331 |
|
| 332 |
(
|
| 333 |
text_self_attention_masks,
|
|
|
|
| 397 |
dictionnaries containing the two above keys for each decoder layer.
|
| 398 |
"""
|
| 399 |
|
|
|
|
| 400 |
if targets is None:
|
| 401 |
captions = kw["captions"]
|
| 402 |
else:
|
|
|
|
| 404 |
|
| 405 |
# encoder texts
|
| 406 |
|
|
|
|
| 407 |
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
|
| 408 |
samples.device
|
| 409 |
)
|
|
|
|
| 410 |
|
| 411 |
one_hot_token = tokenized
|
| 412 |
|
|
|
|
| 475 |
# Get visual exemplar tokens.
|
| 476 |
bs = len(exemplars)
|
| 477 |
num_exemplars = exemplars[0].shape[0]
|
|
|
|
|
|
|
| 478 |
if num_exemplars > 0:
|
| 479 |
exemplar_tokens = (
|
| 480 |
roi_align(
|