Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("BatsResearch/bonito-v1") | |
def respond( | |
message, | |
task_type, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
task_type = task_type.lower() | |
input_text = "<|tasktype|>\n" + task_type.strip() | |
input_text += "\n<|context|>\n" + message.strip() + "\n<|task|>\n" | |
response = client.text_generation(input_text, max_length=max_tokens, temperature=temperature, top_p=top_p) | |
return response | |
# messages = [] | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.text_generation( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
task_types = [ | |
"extractive question answering", | |
"multiple-choice question answering", | |
"question generation", | |
"question answering without choices", | |
"yes-no question answering", | |
"coreference resolution", | |
"paraphrase generation", | |
"paraphrase identification", | |
"sentence completion", | |
"sentiment", | |
"summarization", | |
"text generation", | |
"topic classification", | |
"word sense disambiguation", | |
"textual entailment", | |
"natural language inference", | |
] | |
# capitalize for better readability | |
task_types = [task_type.capitalize() for task_type in task_types] | |
demo = gr.Interface( | |
fn=respond, | |
inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Dropdown(task_types, label="Task type"), | |
], | |
outputs=gr.Textbox(label="Response"), | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
title="Zephyr Chatbot", | |
description="A chatbot that uses the Hugging Face Zephyr model.", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |