File size: 9,009 Bytes
e9af91e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import spaces
import torch
import random
import numpy as np
from inspect import signature
from diffusers import (
    FluxPipeline,
    StableDiffusion3Pipeline,
    PixArtSigmaPipeline,
    SanaPipeline,
    AuraFlowPipeline,
    Kandinsky3Pipeline,
    HunyuanDiTPipeline,
    LuminaText2ImgPipeline,AutoPipelineForText2Image
)
import gradio as gr
from diffusers.pipelines.pipeline_utils import DiffusionPipeline

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

class ProgressPipeline(DiffusionPipeline):
    def __init__(self, original_pipeline):
        super().__init__()
        self.original_pipeline = original_pipeline
        # Register all components from the original pipeline
        for attr_name, attr_value in vars(original_pipeline).items():
            setattr(self, attr_name, attr_value)
    
    @torch.no_grad()
    def __call__(
        self,
        prompt,
        num_inference_steps=30,
        generator=None,
        guidance_scale=7.5,
        callback=None,
        callback_steps=1,
        **kwargs
    ):
        # Initialize the progress tracking
        self._num_inference_steps = num_inference_steps
        self._step = 0
        
        def progress_callback(step_index, timestep, callback_kwargs):
            if callback and step_index % callback_steps == 0:
                # Pass self (the pipeline) to the callback
                callback(self, step_index, timestep, callback_kwargs)
            return callback_kwargs
        
        # Monkey patch the original pipeline's progress tracking
        original_step = self.original_pipeline.scheduler.step
        def wrapped_step(*args, **kwargs):
            self._step += 1
            progress_callback(self._step, None, {})
            return original_step(*args, **kwargs)
        
        self.original_pipeline.scheduler.step = wrapped_step
        
        try:
            # Call the original pipeline
            result = self.original_pipeline(
                prompt=prompt,
                num_inference_steps=num_inference_steps,
                generator=generator,
                guidance_scale=guidance_scale,
                **kwargs
            )
            
            return result
        finally:
            # Restore the original step function
            self.original_pipeline.scheduler.step = original_step

cache_dir = '/workspace/hf_cache'

MODEL_CONFIGS = {
        "FLUX": {
        "repo_id": "black-forest-labs/FLUX.1-dev",
        "pipeline_class": FluxPipeline,
    },
    "Stable Diffusion 3.5": {
        "repo_id": "stabilityai/stable-diffusion-3.5-large",
        "pipeline_class": StableDiffusion3Pipeline,
         
    },
    "PixArt": {
        "repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
        "pipeline_class": PixArtSigmaPipeline,
        
    },
    "SANA": {
        "repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
        "pipeline_class": SanaPipeline,
         
    },
    "AuraFlow": {
        "repo_id": "fal/AuraFlow",
        "pipeline_class": AuraFlowPipeline,
         
    },
    "Kandinsky": {
        "repo_id": "kandinsky-community/kandinsky-3",
        "pipeline_class": Kandinsky3Pipeline,
        
    },
    "Hunyuan": {
        "repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
        "pipeline_class": HunyuanDiTPipeline,
         
    },
    "Lumina": {
        "repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
        "pipeline_class": LuminaText2ImgPipeline,
         
    }
}

def generate_image_with_progress(model_name,pipe, prompt, num_steps, guidance_scale=3.5, seed=None,negative_prompt=None,  randomize_seed=None, width=1024, height=1024, num_inference_steps=40,  progress=gr.Progress(track_tqdm=True)):
    generator = None
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    if seed is not None:
        generator = torch.Generator("cuda").manual_seed(seed)
    else:
        generator = torch.Generator("cuda")

    def callback(pipe, step_index, timestep, callback_kwargs):
        print(f" callback => {step_index}, {timestep}")
        if step_index is None:
            step_index = 0
        cur_prg = step_index / num_steps
        progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
        return callback_kwargs
    print(f"START GENR ")
    # Get the signature of the pipe
    pipe_signature = signature(pipe)
    
    # Check for the presence of "guidance_scale" and "callback_on_step_end" in the signature
    has_guidance_scale = "guidance_scale" in pipe_signature.parameters
    has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters
    
    # Define common arguments
    common_args = {
        "prompt": prompt,
        "num_inference_steps": num_steps,
        "negative_prompt": negative_prompt,
        "width": width,
        "height": height,
        "generator": generator,
    }
    
    if has_guidance_scale:
        common_args["guidance_scale"] = guidance_scale
    
    if has_callback_on_step_end:
        print("has callback_on_step_end and", "has guidance_scale" if has_guidance_scale else "NO guidance_scale")
        common_args["callback_on_step_end"] = callback
    else:
        print("NO callback_on_step_end and", "has guidance_scale" if has_guidance_scale else "NO guidance_scale")
        common_args["callback"] = callback
        common_args["callback_steps"] = 1
    
    # Generate image
    image = pipe(**common_args).images[0]

    return seed, image

@spaces.GPU(duration=170)
def create_pipeline_logic(prompt_text, model_name, negative_prompt="",  seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.5, num_inference_steps=40,):
    print(f"starting {model_name}")
    progress = gr.Progress(track_tqdm=True)
    config = MODEL_CONFIGS[model_name]
    pipe_class = config["pipeline_class"]
    pipe = None
    b_pipe = AutoPipelineForText2Image.from_pretrained(
        config["repo_id"],
        #variant="fp16",
        #cache_dir=config["cache_dir"],
        torch_dtype=torch.bfloat16
    ).to("cuda")
    pipe_signature = signature(b_pipe)
    # Check for the presence of "callback_on_step_end" in the signature
    has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters
    if not has_callback_on_step_end:
        pipe = ProgressPipeline(b_pipe)
        print("ProgressPipeline specal")
    else:
        pipe = b_pipe
        
    gen_seed,image = generate_image_with_progress(
        model_name,pipe, prompt_text, num_steps=num_inference_steps, guidance_scale=guidance_scale, seed=seed,negative_prompt = negative_prompt,  randomize_seed = randomize_seed, width = width, height = height, progress=progress
    )
    return f"Seed: {gen_seed}", image

def main():
    with gr.Blocks() as app:
        gr.Markdown("# Dynamic Multiple Model Image Generation")

        prompt_text = gr.Textbox(label="Enter prompt")

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=100,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=4.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=40,
                )

        for model_name, config in MODEL_CONFIGS.items():
            with gr.Tab(model_name):
                button = gr.Button(f"Run {model_name}")
                output = gr.Textbox(label="Status")
                img = gr.Image(label=model_name, height=300)

                button.click(fn=create_pipeline_logic, inputs=[prompt_text, gr.Text(value= model_name,visible=False), negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps], outputs=[output, img])

    app.launch()


if __name__ == "__main__":
    main()