Update app.py
Browse files
app.py
CHANGED
@@ -2,17 +2,17 @@ import json
|
|
2 |
import logging
|
3 |
import os
|
4 |
import re
|
|
|
5 |
|
6 |
-
import
|
7 |
-
#from pydantic.v1 import BaseSettings
|
8 |
-
from dotenv import load_dotenv
|
9 |
-
from fastapi.encoders import jsonable_encoder
|
10 |
-
from langchain.document_loaders import PyPDFLoader
|
11 |
from langchain.embeddings import OpenAIEmbeddings
|
12 |
from langchain.vectorstores import Chroma
|
|
|
|
|
|
|
13 |
|
14 |
load_dotenv()
|
15 |
-
|
16 |
|
17 |
ABS_PATH = os.path.dirname(os.path.abspath(__file__))
|
18 |
DB_DIR = os.path.join(ABS_PATH, "db")
|
@@ -21,10 +21,8 @@ DB_DIR = os.path.join(ABS_PATH, "db")
|
|
21 |
def replace_newlines_and_spaces(text):
|
22 |
# Replace all newline characters with spaces
|
23 |
text = text.replace("\n", " ")
|
24 |
-
|
25 |
# Replace multiple spaces with a single space
|
26 |
text = re.sub(r'\s+', ' ', text)
|
27 |
-
|
28 |
return text
|
29 |
|
30 |
|
@@ -33,59 +31,46 @@ def get_documents():
|
|
33 |
|
34 |
|
35 |
def init_chromadb():
|
36 |
-
|
|
|
|
|
|
|
37 |
os.mkdir(DB_DIR)
|
38 |
|
39 |
-
client_settings = chromadb.config.Settings(
|
40 |
-
chroma_db_impl="duckdb+parquet",
|
41 |
-
persist_directory=DB_DIR,
|
42 |
-
anonymized_telemetry=False
|
43 |
-
)
|
44 |
-
embeddings = OpenAIEmbeddings()
|
45 |
-
|
46 |
-
vectorstore = Chroma(
|
47 |
-
collection_name="langchain_store",
|
48 |
-
embedding_function=embeddings,
|
49 |
-
client_settings=client_settings,
|
50 |
-
persist_directory=DB_DIR,
|
51 |
-
)
|
52 |
documents = []
|
53 |
for num, doc in enumerate(get_documents()):
|
54 |
doc.page_content = replace_newlines_and_spaces(doc.page_content)
|
55 |
documents.append(doc)
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
vectorstore.persist()
|
59 |
print(vectorstore)
|
60 |
-
|
61 |
|
62 |
def query_chromadb():
|
63 |
if not os.path.exists(DB_DIR):
|
64 |
raise Exception(f"{DB_DIR} does not exist, nothing can be queried")
|
65 |
|
66 |
-
|
67 |
-
chroma_db_impl="duckdb+parquet",
|
68 |
-
persist_directory=DB_DIR,
|
69 |
-
anonymized_telemetry=False
|
70 |
-
)
|
71 |
-
|
72 |
embeddings = OpenAIEmbeddings()
|
|
|
|
|
73 |
|
74 |
-
vectorstore = Chroma(
|
75 |
-
collection_name="langchain_store",
|
76 |
-
embedding_function=embeddings,
|
77 |
-
client_settings=client_settings,
|
78 |
-
persist_directory=DB_DIR,
|
79 |
-
)
|
80 |
result = vectorstore.similarity_search_with_score(query="who is FREDERICK?", k=4)
|
81 |
jsonable_result = jsonable_encoder(result)
|
82 |
print(json.dumps(jsonable_result, indent=2))
|
83 |
|
84 |
-
|
85 |
def main():
|
86 |
init_chromadb()
|
87 |
query_chromadb()
|
88 |
|
89 |
-
|
90 |
if __name__ == '__main__':
|
91 |
main()
|
|
|
2 |
import logging
|
3 |
import os
|
4 |
import re
|
5 |
+
import sys
|
6 |
|
7 |
+
from langchain.text_splitter import CharacterTextSplitter
|
|
|
|
|
|
|
|
|
8 |
from langchain.embeddings import OpenAIEmbeddings
|
9 |
from langchain.vectorstores import Chroma
|
10 |
+
from langchain.document_loaders import PyPDFLoader
|
11 |
+
from fastapi.encoders import jsonable_encoder
|
12 |
+
from dotenv import load_dotenv
|
13 |
|
14 |
load_dotenv()
|
15 |
+
logging.basicConfig(level=logging.DEBUG)
|
16 |
|
17 |
ABS_PATH = os.path.dirname(os.path.abspath(__file__))
|
18 |
DB_DIR = os.path.join(ABS_PATH, "db")
|
|
|
21 |
def replace_newlines_and_spaces(text):
|
22 |
# Replace all newline characters with spaces
|
23 |
text = text.replace("\n", " ")
|
|
|
24 |
# Replace multiple spaces with a single space
|
25 |
text = re.sub(r'\s+', ' ', text)
|
|
|
26 |
return text
|
27 |
|
28 |
|
|
|
31 |
|
32 |
|
33 |
def init_chromadb():
|
34 |
+
# Delete existing index directory and recreate the directory
|
35 |
+
if os.path.exists(DB_DIR):
|
36 |
+
import shutil
|
37 |
+
shutil.rmtree(DB_DIR, ignore_errors=True)
|
38 |
os.mkdir(DB_DIR)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
documents = []
|
41 |
for num, doc in enumerate(get_documents()):
|
42 |
doc.page_content = replace_newlines_and_spaces(doc.page_content)
|
43 |
documents.append(doc)
|
44 |
|
45 |
+
# Split the documents into chunks
|
46 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
47 |
+
texts = text_splitter.split_documents(documents)
|
48 |
+
|
49 |
+
# Select which embeddings we want to use
|
50 |
+
embeddings = OpenAIEmbeddings()
|
51 |
+
|
52 |
+
# Create the vectorestore to use as the index
|
53 |
+
vectorstore = Chroma.from_documents(texts, embeddings, persist_directory=DB_DIR)
|
54 |
vectorstore.persist()
|
55 |
print(vectorstore)
|
56 |
+
vectorstore = None
|
57 |
|
58 |
def query_chromadb():
|
59 |
if not os.path.exists(DB_DIR):
|
60 |
raise Exception(f"{DB_DIR} does not exist, nothing can be queried")
|
61 |
|
62 |
+
# Select which embeddings we want to use
|
|
|
|
|
|
|
|
|
|
|
63 |
embeddings = OpenAIEmbeddings()
|
64 |
+
# Load Vector store from local disk
|
65 |
+
vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embeddings)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
result = vectorstore.similarity_search_with_score(query="who is FREDERICK?", k=4)
|
68 |
jsonable_result = jsonable_encoder(result)
|
69 |
print(json.dumps(jsonable_result, indent=2))
|
70 |
|
|
|
71 |
def main():
|
72 |
init_chromadb()
|
73 |
query_chromadb()
|
74 |
|
|
|
75 |
if __name__ == '__main__':
|
76 |
main()
|