nightfury commited on
Commit
2b33362
·
verified ·
1 Parent(s): 8b32e37

Update appChatbot.py

Browse files
Files changed (1) hide show
  1. appChatbot.py +5 -2
appChatbot.py CHANGED
@@ -7,6 +7,7 @@ import gradio as gr
7
  from huggingface_hub import InferenceClient
8
 
9
  #from chromadb.utils import embedding_functions
 
10
 
11
  from langchain.text_splitter import CharacterTextSplitter
12
  from langchain.embeddings import OpenAIEmbeddings
@@ -50,7 +51,8 @@ def init_chromadb():
50
  text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
51
  texts = text_splitter.split_documents(documents)
52
  # Select which embeddings we want to use
53
- embeddings = OpenAIEmbeddings()
 
54
  #query_chromadb()
55
 
56
  # Create the vectorestore to use as the index
@@ -64,7 +66,8 @@ def query_chromadb(ASK):
64
  raise Exception(f"{DB_DIR} does not exist, nothing can be queried")
65
 
66
  # Select which embeddings we want to use
67
- embeddings = OpenAIEmbeddings()
 
68
  # Load Vector store from local disk
69
  vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embeddings)
70
 
 
7
  from huggingface_hub import InferenceClient
8
 
9
  #from chromadb.utils import embedding_functions
10
+ from langchain_community.embeddings import SentenceTransformerEmbeddings
11
 
12
  from langchain.text_splitter import CharacterTextSplitter
13
  from langchain.embeddings import OpenAIEmbeddings
 
51
  text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
52
  texts = text_splitter.split_documents(documents)
53
  # Select which embeddings we want to use
54
+ #embeddings = OpenAIEmbeddings()
55
+ embeddings = SentenceTransformerEmbeddings(model_name="nomic-ai/nomic-embed-text-v1", model_kwargs={"trust_remote_code":True})
56
  #query_chromadb()
57
 
58
  # Create the vectorestore to use as the index
 
66
  raise Exception(f"{DB_DIR} does not exist, nothing can be queried")
67
 
68
  # Select which embeddings we want to use
69
+ #embeddings = OpenAIEmbeddings()
70
+ embeddings = SentenceTransformerEmbeddings(model_name="nomic-ai/nomic-embed-text-v1", model_kwargs={"trust_remote_code":True})
71
  # Load Vector store from local disk
72
  vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embeddings)
73