nightfury commited on
Commit
108f56d
·
verified ·
1 Parent(s): 4ffac05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -1
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import json
2
  import logging
3
  import os
@@ -94,4 +95,44 @@ def main():
94
  init_chromadb()
95
 
96
  if __name__ == '__main__':
97
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
  import json
3
  import logging
4
  import os
 
95
  init_chromadb()
96
 
97
  if __name__ == '__main__':
98
+ main()
99
+ """
100
+ import chromadb
101
+ from llama_index.vector_stores.chroma import ChromaVectorStore
102
+ from llama_index.core import VectorStoreIndex, StorageContext, TextNode
103
+ from llama_index.core.indices.vector_store.retrievers import VectorIndexAutoRetriever
104
+ from llama_index.core.query_engine import RetrieverQueryEngine
105
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
106
+
107
+ # Initialize ChromaDB client and collection
108
+ chroma_client = chromadb.HttpClient(host="localhost", port="8080", ssl=False)
109
+ chroma_collection = chroma_client.get_or_create_collection("example_collection")
110
+
111
+ # Define embedding function using HuggingFace
112
+ embed_model = HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2")
113
+
114
+ # Initialize ChromaVectorStore with the collection
115
+ vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
116
+
117
+ # Set up StorageContext and VectorStoreIndex
118
+ storage_context = StorageContext.from_defaults(vector_store=vector_store)
119
+ index = VectorStoreIndex(embed_model=embed_model, storage_context=storage_context)
120
+
121
+ # Define and load documents with embeddings
122
+ documents = [
123
+ {"text": "Your document text here", "embedding": [0.1, 0.2, 0.3]},
124
+ # Add more documents as needed
125
+ ]
126
+
127
+ # Load documents into ChromaDB using VectorStoreIndex
128
+ index.from_documents(documents=documents)
129
+
130
+ # Initialize the AutoRetriever with VectorStoreIndex and VectorStoreInfo
131
+ auto_retriever = VectorIndexAutoRetriever(index)
132
+
133
+ # Set up the RetrieverQuery Engine with the AutoRetriever
134
+ query_engine = RetrieverQueryEngine(auto_retriever)
135
+
136
+ # Query documents using the RetrieverQuery Engine
137
+ response = query_engine.query("Your query here")
138
+ print(response)