Spaces:
Running
on
Zero
Running
on
Zero
Add application file
Browse files- .dockerignore +13 -0
- Dockerfile +38 -0
- README.md +276 -12
- docker-compose.yml +45 -0
- environment.yml +15 -0
- profanity_detector.py +822 -0
- requirements.txt +9 -0
- test_text.md +50 -0
.dockerignore
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.git
|
| 2 |
+
.gitignore
|
| 3 |
+
__pycache__/
|
| 4 |
+
*.py[cod]
|
| 5 |
+
*$py.class
|
| 6 |
+
*.so
|
| 7 |
+
.env
|
| 8 |
+
.venv
|
| 9 |
+
env/
|
| 10 |
+
venv/
|
| 11 |
+
ENV/
|
| 12 |
+
*.log
|
| 13 |
+
temp_*.wav
|
Dockerfile
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use PyTorch as base image (comes with CUDA support in the GPU variant)
|
| 2 |
+
FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Set environment variables
|
| 8 |
+
ENV PYTHONDONTWRITEBYTECODE=1 \
|
| 9 |
+
PYTHONUNBUFFERED=1 \
|
| 10 |
+
KMP_DUPLICATE_LIB_OK=TRUE \
|
| 11 |
+
DEBIAN_FRONTEND=noninteractive \
|
| 12 |
+
TZ=UTC
|
| 13 |
+
|
| 14 |
+
# Install system dependencies
|
| 15 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 16 |
+
ffmpeg \
|
| 17 |
+
libsndfile1 \
|
| 18 |
+
build-essential \
|
| 19 |
+
&& apt-get clean \
|
| 20 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 21 |
+
|
| 22 |
+
# Create directory for model caching
|
| 23 |
+
RUN mkdir -p /root/.cache/huggingface
|
| 24 |
+
|
| 25 |
+
# Copy requirements file
|
| 26 |
+
COPY requirements.txt .
|
| 27 |
+
|
| 28 |
+
# Install Python dependencies
|
| 29 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 30 |
+
|
| 31 |
+
# Copy application code
|
| 32 |
+
COPY profanity_detector.py .
|
| 33 |
+
|
| 34 |
+
# Expose the Gradio port
|
| 35 |
+
EXPOSE 7860
|
| 36 |
+
|
| 37 |
+
# Command to run the application
|
| 38 |
+
CMD ["python", "profanity_detector.py"]
|
README.md
CHANGED
|
@@ -1,12 +1,276 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Profanity Detection in Speech and Text
|
| 2 |
+
|
| 3 |
+
A robust multimodal system for detecting and rephrasing profanity in both speech and text, leveraging advanced NLP models to ensure accurate filtering while preserving conversational context.
|
| 4 |
+
|
| 5 |
+

|
| 6 |
+

|
| 7 |
+

|
| 8 |
+
|
| 9 |
+
## 📋 Features
|
| 10 |
+
|
| 11 |
+
- **Multimodal Analysis**: Process both written text and spoken audio
|
| 12 |
+
- **Context-Aware Detection**: Goes beyond simple keyword matching
|
| 13 |
+
- **Automatic Content Refinement**: Intelligently rephrases content while preserving meaning
|
| 14 |
+
- **Audio Synthesis**: Converts rephrased content into high-quality spoken audio
|
| 15 |
+
- **Classification System**: Categorises content by toxicity levels
|
| 16 |
+
- **User-Friendly Interface**: Intuitive Gradio-based UI
|
| 17 |
+
- **Real-time Streaming**: Process audio in real-time as you speak
|
| 18 |
+
- **Adjustable Sensitivity**: Fine-tune profanity detection threshold
|
| 19 |
+
- **Visual Highlighting**: Instantly identify problematic words with visual highlighting
|
| 20 |
+
- **Toxicity Classification**: Automatically categorize content from "No Toxicity" to "Severe Toxicity"
|
| 21 |
+
- **Performance Optimization**: Half-precision support for improved GPU memory efficiency
|
| 22 |
+
|
| 23 |
+
## 🧠 Models Used
|
| 24 |
+
|
| 25 |
+
The system leverages four powerful models:
|
| 26 |
+
|
| 27 |
+
1. **Profanity Detection**: `parsawar/profanity_model_3.1` - A RoBERTa-based model trained for offensive language detection
|
| 28 |
+
2. **Content Refinement**: `s-nlp/t5-paranmt-detox` - A T5-based model for rephrasing offensive language
|
| 29 |
+
3. **Speech-to-Text**: OpenAI's `Whisper` (large) - For transcribing spoken audio
|
| 30 |
+
4. **Text-to-Speech**: Microsoft's `SpeechT5` - For converting rephrased text back to audio
|
| 31 |
+
|
| 32 |
+
## 🔧 Installation
|
| 33 |
+
|
| 34 |
+
### Prerequisites
|
| 35 |
+
|
| 36 |
+
- Python 3.10+
|
| 37 |
+
- CUDA-compatible GPU recommended (but CPU mode works too)
|
| 38 |
+
- FFmpeg for audio processing
|
| 39 |
+
|
| 40 |
+
### Option 1: Using Conda (Recommended for Local Development)
|
| 41 |
+
|
| 42 |
+
```bash
|
| 43 |
+
# Clone the repository
|
| 44 |
+
git clone https://github.com/yourusername/profanity-detection.git
|
| 45 |
+
cd profanity-detection
|
| 46 |
+
|
| 47 |
+
# Method A: Create environment from environment.yml (recommended)
|
| 48 |
+
conda env create -f environment.yml
|
| 49 |
+
conda activate llm_project
|
| 50 |
+
|
| 51 |
+
# Method B: Create a new conda environment manually
|
| 52 |
+
conda create -n profanity-detection python=3.10
|
| 53 |
+
conda activate profanity-detection
|
| 54 |
+
|
| 55 |
+
# Install PyTorch with CUDA support (adjust CUDA version if needed)
|
| 56 |
+
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
|
| 57 |
+
|
| 58 |
+
# Install FFmpeg for audio processing
|
| 59 |
+
conda install -c conda-forge ffmpeg
|
| 60 |
+
|
| 61 |
+
# Install Pillow properly to avoid DLL errors
|
| 62 |
+
conda install -c conda-forge pillow
|
| 63 |
+
|
| 64 |
+
# Install additional dependencies
|
| 65 |
+
pip install -r requirements.txt
|
| 66 |
+
|
| 67 |
+
# Set environment variable to avoid OpenMP conflicts (recommended)
|
| 68 |
+
conda env config vars set KMP_DUPLICATE_LIB_OK=TRUE
|
| 69 |
+
conda activate profanity-detection # Re-activate to apply the variable
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
### Option 2: Using Docker
|
| 73 |
+
|
| 74 |
+
```bash
|
| 75 |
+
# Clone the repository
|
| 76 |
+
git clone https://github.com/yourusername/profanity-detection.git
|
| 77 |
+
cd profanity-detection
|
| 78 |
+
|
| 79 |
+
# Build and run the Docker container
|
| 80 |
+
docker-compose build --no-cache
|
| 81 |
+
|
| 82 |
+
docker-compose up
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
## 🚀 Usage
|
| 86 |
+
|
| 87 |
+
### Running the Application
|
| 88 |
+
|
| 89 |
+
```bash
|
| 90 |
+
# Set environment variable to avoid OpenMP conflicts (if not set in conda config)
|
| 91 |
+
# For Windows:
|
| 92 |
+
set KMP_DUPLICATE_LIB_OK=TRUE
|
| 93 |
+
|
| 94 |
+
# For Linux/Mac:
|
| 95 |
+
export KMP_DUPLICATE_LIB_OK=TRUE
|
| 96 |
+
|
| 97 |
+
# Run the application
|
| 98 |
+
python profanity_detector.py
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
The Gradio interface will be accessible at http://127.0.0.1:7860 in your browser.
|
| 102 |
+
|
| 103 |
+
### Using the Interface
|
| 104 |
+
|
| 105 |
+
1. **Initialise Models**
|
| 106 |
+
- Click the "Initialize Models" button when you first open the interface
|
| 107 |
+
- Wait for all models to load (this may take a few minutes on first run)
|
| 108 |
+
|
| 109 |
+
2. **Text Analysis Tab**
|
| 110 |
+
- Enter text into the text box
|
| 111 |
+
- Adjust the "Profanity Detection Sensitivity" slider if needed
|
| 112 |
+
- Click "Analyze Text"
|
| 113 |
+
- View results including profanity score, toxicity classification, and rephrased content
|
| 114 |
+
- See highlighted profane words in the text
|
| 115 |
+
- Listen to the audio version of the rephrased content
|
| 116 |
+
|
| 117 |
+
3. **Audio Analysis Tab**
|
| 118 |
+
- Upload an audio file or record directly using your microphone
|
| 119 |
+
- Click "Analyze Audio"
|
| 120 |
+
- View transcription, profanity analysis, and rephrased content
|
| 121 |
+
- Listen to the cleaned audio version of the rephrased content
|
| 122 |
+
|
| 123 |
+
4. **Real-time Streaming Tab**
|
| 124 |
+
- Click "Start Real-time Processing"
|
| 125 |
+
- Speak into your microphone
|
| 126 |
+
- Watch as your speech is transcribed, analyzed, and rephrased in real-time
|
| 127 |
+
- Listen to the clean audio output
|
| 128 |
+
- Click "Stop Real-time Processing" when finished
|
| 129 |
+
|
| 130 |
+
## 🔧 Deployment Options
|
| 131 |
+
|
| 132 |
+
### Local Deployment with Conda
|
| 133 |
+
|
| 134 |
+
For the best development experience with fine-grained control:
|
| 135 |
+
|
| 136 |
+
```bash
|
| 137 |
+
# Create and configure environment
|
| 138 |
+
conda env create -f environment.yml
|
| 139 |
+
conda activate llm_project
|
| 140 |
+
|
| 141 |
+
# Run with sharing enabled (accessible from other devices)
|
| 142 |
+
python profanity_detector.py
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
### Docker Deployment (Production)
|
| 146 |
+
|
| 147 |
+
For containerised deployment with predictable environment:
|
| 148 |
+
|
| 149 |
+
#### Basic CPU Deployment
|
| 150 |
+
```bash
|
| 151 |
+
docker-compose up --build
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
#### GPU-Accelerated Deployment
|
| 155 |
+
```bash
|
| 156 |
+
# Automatic detection (recommended)
|
| 157 |
+
docker-compose up --build
|
| 158 |
+
|
| 159 |
+
# Or explicitly request GPU mode
|
| 160 |
+
docker-compose up --build profanity-detector-gpu
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
No need to edit any configuration files - the system will automatically detect and use your GPU if available.
|
| 164 |
+
|
| 165 |
+
#### Custom Port Configuration
|
| 166 |
+
To change the default port (7860):
|
| 167 |
+
1. Edit docker-compose.yml and change the port mapping (e.g., "8080:7860")
|
| 168 |
+
2. Run `docker-compose up --build`
|
| 169 |
+
|
| 170 |
+
## ⚠️ Troubleshooting
|
| 171 |
+
|
| 172 |
+
### OpenMP Runtime Conflict
|
| 173 |
+
|
| 174 |
+
If you encounter this error:
|
| 175 |
+
```
|
| 176 |
+
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
|
| 177 |
+
```
|
| 178 |
+
|
| 179 |
+
**Solutions:**
|
| 180 |
+
|
| 181 |
+
1. **Temporary fix**: Set environment variable before running:
|
| 182 |
+
```bash
|
| 183 |
+
set KMP_DUPLICATE_LIB_OK=TRUE # Windows
|
| 184 |
+
export KMP_DUPLICATE_LIB_OK=TRUE # Linux/Mac
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
2. **Code-based fix**: Add to the beginning of your script:
|
| 188 |
+
```python
|
| 189 |
+
import os
|
| 190 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
| 191 |
+
```
|
| 192 |
+
|
| 193 |
+
3. **Permanent fix for Conda environment**:
|
| 194 |
+
```bash
|
| 195 |
+
conda env config vars set KMP_DUPLICATE_LIB_OK=TRUE -n profanity-detection
|
| 196 |
+
conda deactivate
|
| 197 |
+
conda activate profanity-detection
|
| 198 |
+
```
|
| 199 |
+
|
| 200 |
+
### GPU Memory Issues
|
| 201 |
+
|
| 202 |
+
If you encounter CUDA out of memory errors:
|
| 203 |
+
|
| 204 |
+
1. Use smaller models:
|
| 205 |
+
```python
|
| 206 |
+
# Change Whisper from "large" to "medium" or "small"
|
| 207 |
+
whisper_model = whisper.load_model("medium").to(device)
|
| 208 |
+
|
| 209 |
+
# Keep the TTS model on CPU to save GPU memory
|
| 210 |
+
tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL) # CPU mode
|
| 211 |
+
```
|
| 212 |
+
|
| 213 |
+
2. Run some models on CPU instead of GPU:
|
| 214 |
+
```python
|
| 215 |
+
# Remove .to(device) to keep model on CPU
|
| 216 |
+
t5_model = AutoModelForSeq2SeqLM.from_pretrained(T5_MODEL) # CPU mode
|
| 217 |
+
```
|
| 218 |
+
|
| 219 |
+
3. Use Docker with specific GPU memory limits:
|
| 220 |
+
```yaml
|
| 221 |
+
# In docker-compose.yml
|
| 222 |
+
deploy:
|
| 223 |
+
resources:
|
| 224 |
+
reservations:
|
| 225 |
+
devices:
|
| 226 |
+
- driver: nvidia
|
| 227 |
+
count: 1
|
| 228 |
+
capabilities: [gpu]
|
| 229 |
+
options:
|
| 230 |
+
memory: 4G # Limit to 4GB of GPU memory
|
| 231 |
+
```
|
| 232 |
+
|
| 233 |
+
### Docker-Specific Issues
|
| 234 |
+
|
| 235 |
+
1. **Permission issues with mounted volumes**:
|
| 236 |
+
```bash
|
| 237 |
+
# Fix permissions (Linux/Mac)
|
| 238 |
+
sudo chown -R $USER:$USER .
|
| 239 |
+
```
|
| 240 |
+
|
| 241 |
+
2. **No GPU access in container**:
|
| 242 |
+
- Verify NVIDIA Container Toolkit installation
|
| 243 |
+
- Check GPU driver compatibility
|
| 244 |
+
- Run `nvidia-smi` on the host to confirm GPU availability
|
| 245 |
+
|
| 246 |
+
### First-Time Slowness
|
| 247 |
+
|
| 248 |
+
When first run, the application downloads all models, which may take time. Subsequent runs will be faster as models are cached locally. The text-to-speech model requires additional download time on first use.
|
| 249 |
+
|
| 250 |
+
## 📄 Project Structure
|
| 251 |
+
|
| 252 |
+
```
|
| 253 |
+
profanity-detection/
|
| 254 |
+
├── profanity_detector.py # Main application file
|
| 255 |
+
├── Dockerfile # For containerised deployment
|
| 256 |
+
├── docker-compose.yml # Container orchestration
|
| 257 |
+
├── requirements.txt # Python dependencies
|
| 258 |
+
├── environment.yml # Conda environment specification
|
| 259 |
+
└── README.md # This file
|
| 260 |
+
```
|
| 261 |
+
|
| 262 |
+
## 📚 References
|
| 263 |
+
|
| 264 |
+
- [HuggingFace Transformers](https://huggingface.co/docs/transformers/index)
|
| 265 |
+
- [OpenAI Whisper](https://github.com/openai/whisper)
|
| 266 |
+
- [Microsoft SpeechT5](https://huggingface.co/microsoft/speecht5_tts)
|
| 267 |
+
- [Gradio Documentation](https://gradio.app/docs/)
|
| 268 |
+
|
| 269 |
+
## 📝 License
|
| 270 |
+
|
| 271 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
| 272 |
+
|
| 273 |
+
## 🙏 Acknowledgments
|
| 274 |
+
|
| 275 |
+
- This project utilises models from HuggingFace Hub, Microsoft, and OpenAI
|
| 276 |
+
- Inspired by research in content moderation and responsible AI
|
docker-compose.yml
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version: '3.8'
|
| 2 |
+
|
| 3 |
+
services:
|
| 4 |
+
# Main service configuration - automatically uses GPU if available
|
| 5 |
+
profanity-detector:
|
| 6 |
+
build:
|
| 7 |
+
context: .
|
| 8 |
+
dockerfile: Dockerfile
|
| 9 |
+
ports:
|
| 10 |
+
- "7860:7860"
|
| 11 |
+
volumes:
|
| 12 |
+
- huggingface-cache:/root/.cache/huggingface
|
| 13 |
+
- ./:/app # Mount current directory for development
|
| 14 |
+
environment:
|
| 15 |
+
- KMP_DUPLICATE_LIB_OK=TRUE
|
| 16 |
+
command: python profanity_detector.py
|
| 17 |
+
deploy:
|
| 18 |
+
resources:
|
| 19 |
+
reservations:
|
| 20 |
+
devices:
|
| 21 |
+
- driver: nvidia
|
| 22 |
+
count: 1
|
| 23 |
+
capabilities: [gpu]
|
| 24 |
+
restart: unless-stopped
|
| 25 |
+
|
| 26 |
+
# Explicit CPU-only configuration for when GPU causes issues
|
| 27 |
+
profanity-detector-cpu:
|
| 28 |
+
build:
|
| 29 |
+
context: .
|
| 30 |
+
dockerfile: Dockerfile
|
| 31 |
+
ports:
|
| 32 |
+
- "7860:7860"
|
| 33 |
+
volumes:
|
| 34 |
+
- huggingface-cache:/root/.cache/huggingface
|
| 35 |
+
- ./:/app # Mount current directory for development
|
| 36 |
+
environment:
|
| 37 |
+
- KMP_DUPLICATE_LIB_OK=TRUE
|
| 38 |
+
- CUDA_VISIBLE_DEVICES=-1 # Disable CUDA
|
| 39 |
+
command: python profanity_detector.py
|
| 40 |
+
profiles:
|
| 41 |
+
- cpu-only
|
| 42 |
+
restart: unless-stopped
|
| 43 |
+
|
| 44 |
+
volumes:
|
| 45 |
+
huggingface-cache:
|
environment.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: profanity-detection
|
| 2 |
+
channels:
|
| 3 |
+
- https://repo.anaconda.com/pkgs/main
|
| 4 |
+
- https://repo.anaconda.com/pkgs/r
|
| 5 |
+
- https://repo.anaconda.com/pkgs/msys2
|
| 6 |
+
dependencies:
|
| 7 |
+
- python=3.10
|
| 8 |
+
- pytorch
|
| 9 |
+
- pytorch-cuda=11.8
|
| 10 |
+
- torchaudio
|
| 11 |
+
- torchvision
|
| 12 |
+
- ffmpeg
|
| 13 |
+
variables:
|
| 14 |
+
KMP_DUPLICATE_LIB_OK: 'TRUE'
|
| 15 |
+
prefix: C:\Users\brian\anaconda3\envs\profanity-detection
|
profanity_detector.py
ADDED
|
@@ -0,0 +1,822 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 4 |
+
import whisper
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import re
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
import os
|
| 10 |
+
import time
|
| 11 |
+
import logging
|
| 12 |
+
import threading
|
| 13 |
+
import queue
|
| 14 |
+
from scipy.io.wavfile import write as write_wav
|
| 15 |
+
from html import escape
|
| 16 |
+
import traceback
|
| 17 |
+
|
| 18 |
+
# Configure logging
|
| 19 |
+
logging.basicConfig(
|
| 20 |
+
level=logging.INFO,
|
| 21 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 22 |
+
handlers=[logging.StreamHandler()]
|
| 23 |
+
)
|
| 24 |
+
logger = logging.getLogger('profanity_detector')
|
| 25 |
+
|
| 26 |
+
# Define device at the top of the script (global scope)
|
| 27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
+
logger.info(f"Using device: {device}")
|
| 29 |
+
|
| 30 |
+
# Global variables for models
|
| 31 |
+
profanity_model = None
|
| 32 |
+
profanity_tokenizer = None
|
| 33 |
+
t5_model = None
|
| 34 |
+
t5_tokenizer = None
|
| 35 |
+
whisper_model = None
|
| 36 |
+
tts_processor = None
|
| 37 |
+
tts_model = None
|
| 38 |
+
vocoder = None
|
| 39 |
+
models_loaded = False
|
| 40 |
+
|
| 41 |
+
# Default speaker embeddings for TTS
|
| 42 |
+
speaker_embeddings = None
|
| 43 |
+
|
| 44 |
+
# Queue for real-time audio processing
|
| 45 |
+
audio_queue = queue.Queue()
|
| 46 |
+
processing_active = False
|
| 47 |
+
|
| 48 |
+
# Model loading with int8 quantization
|
| 49 |
+
def load_models():
|
| 50 |
+
global profanity_model, profanity_tokenizer, t5_model, t5_tokenizer, whisper_model
|
| 51 |
+
global tts_processor, tts_model, vocoder, speaker_embeddings, models_loaded
|
| 52 |
+
|
| 53 |
+
try:
|
| 54 |
+
logger.info("Loading profanity detection model...")
|
| 55 |
+
PROFANITY_MODEL = "parsawar/profanity_model_3.1"
|
| 56 |
+
profanity_tokenizer = AutoTokenizer.from_pretrained(PROFANITY_MODEL)
|
| 57 |
+
|
| 58 |
+
# Load model with memory optimization using half-precision
|
| 59 |
+
profanity_model = AutoModelForSequenceClassification.from_pretrained(PROFANITY_MODEL)
|
| 60 |
+
|
| 61 |
+
# Move to GPU if available and optimize with half-precision where possible
|
| 62 |
+
if torch.cuda.is_available():
|
| 63 |
+
profanity_model = profanity_model.to(device)
|
| 64 |
+
# Convert to half precision to save memory (if possible)
|
| 65 |
+
try:
|
| 66 |
+
profanity_model = profanity_model.half() # Convert to FP16
|
| 67 |
+
logger.info("Successfully converted profanity model to half precision")
|
| 68 |
+
except Exception as e:
|
| 69 |
+
logger.warning(f"Could not convert to half precision: {str(e)}")
|
| 70 |
+
|
| 71 |
+
logger.info("Loading detoxification model...")
|
| 72 |
+
T5_MODEL = "s-nlp/t5-paranmt-detox"
|
| 73 |
+
t5_tokenizer = AutoTokenizer.from_pretrained(T5_MODEL)
|
| 74 |
+
|
| 75 |
+
# Load model with memory optimization
|
| 76 |
+
t5_model = AutoModelForSeq2SeqLM.from_pretrained(T5_MODEL)
|
| 77 |
+
|
| 78 |
+
# Move to GPU if available and optimize with half-precision where possible
|
| 79 |
+
if torch.cuda.is_available():
|
| 80 |
+
t5_model = t5_model.to(device)
|
| 81 |
+
# Convert to half precision to save memory (if possible)
|
| 82 |
+
try:
|
| 83 |
+
t5_model = t5_model.half() # Convert to FP16
|
| 84 |
+
logger.info("Successfully converted T5 model to half precision")
|
| 85 |
+
except Exception as e:
|
| 86 |
+
logger.warning(f"Could not convert to half precision: {str(e)}")
|
| 87 |
+
|
| 88 |
+
logger.info("Loading Whisper speech-to-text model...")
|
| 89 |
+
whisper_model = whisper.load_model("large")
|
| 90 |
+
if torch.cuda.is_available():
|
| 91 |
+
whisper_model = whisper_model.to(device)
|
| 92 |
+
|
| 93 |
+
logger.info("Loading Text-to-Speech model...")
|
| 94 |
+
TTS_MODEL = "microsoft/speecht5_tts"
|
| 95 |
+
tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL)
|
| 96 |
+
# Load TTS models without automatic device mapping
|
| 97 |
+
tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL)
|
| 98 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 99 |
+
|
| 100 |
+
# Move models to appropriate device
|
| 101 |
+
if torch.cuda.is_available():
|
| 102 |
+
tts_model = tts_model.to(device)
|
| 103 |
+
vocoder = vocoder.to(device)
|
| 104 |
+
|
| 105 |
+
# Speaker embeddings for TTS
|
| 106 |
+
speaker_embeddings = torch.zeros((1, 512))
|
| 107 |
+
if torch.cuda.is_available():
|
| 108 |
+
speaker_embeddings = speaker_embeddings.to(device)
|
| 109 |
+
|
| 110 |
+
models_loaded = True
|
| 111 |
+
logger.info("All models loaded successfully.")
|
| 112 |
+
|
| 113 |
+
return "Models loaded successfully."
|
| 114 |
+
except Exception as e:
|
| 115 |
+
error_msg = f"Error loading models: {str(e)}\n{traceback.format_exc()}"
|
| 116 |
+
logger.error(error_msg)
|
| 117 |
+
return error_msg
|
| 118 |
+
|
| 119 |
+
def detect_profanity(text: str, threshold: float = 0.5):
|
| 120 |
+
"""
|
| 121 |
+
Detect profanity in text with adjustable threshold
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
text: The input text to analyze
|
| 125 |
+
threshold: Profanity detection threshold (0.0-1.0)
|
| 126 |
+
|
| 127 |
+
Returns:
|
| 128 |
+
Dictionary with analysis results
|
| 129 |
+
"""
|
| 130 |
+
if not models_loaded:
|
| 131 |
+
return {"error": "Models not loaded yet. Please wait."}
|
| 132 |
+
|
| 133 |
+
try:
|
| 134 |
+
# Detect profanity and score
|
| 135 |
+
inputs = profanity_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 136 |
+
if torch.cuda.is_available():
|
| 137 |
+
inputs = inputs.to(device)
|
| 138 |
+
|
| 139 |
+
with torch.no_grad():
|
| 140 |
+
outputs = profanity_model(**inputs).logits
|
| 141 |
+
score = torch.nn.functional.softmax(outputs, dim=1)[0][1].item()
|
| 142 |
+
|
| 143 |
+
# Identify specific profane words
|
| 144 |
+
words = re.findall(r'\b\w+\b', text)
|
| 145 |
+
profane_words = []
|
| 146 |
+
word_scores = {}
|
| 147 |
+
|
| 148 |
+
if score > threshold:
|
| 149 |
+
for word in words:
|
| 150 |
+
if len(word) < 2: # Skip very short words
|
| 151 |
+
continue
|
| 152 |
+
|
| 153 |
+
word_inputs = profanity_tokenizer(word, return_tensors="pt", truncation=True, max_length=512)
|
| 154 |
+
if torch.cuda.is_available():
|
| 155 |
+
word_inputs = word_inputs.to(device)
|
| 156 |
+
|
| 157 |
+
with torch.no_grad():
|
| 158 |
+
word_outputs = profanity_model(**word_inputs).logits
|
| 159 |
+
word_score = torch.nn.functional.softmax(word_outputs, dim=1)[0][1].item()
|
| 160 |
+
word_scores[word] = word_score
|
| 161 |
+
|
| 162 |
+
if word_score > threshold:
|
| 163 |
+
profane_words.append(word.lower())
|
| 164 |
+
|
| 165 |
+
# Create highlighted version of the text
|
| 166 |
+
highlighted_text = create_highlighted_text(text, profane_words)
|
| 167 |
+
|
| 168 |
+
return {
|
| 169 |
+
"text": text,
|
| 170 |
+
"score": score,
|
| 171 |
+
"profanity": score > threshold,
|
| 172 |
+
"profane_words": profane_words,
|
| 173 |
+
"highlighted_text": highlighted_text,
|
| 174 |
+
"word_scores": word_scores
|
| 175 |
+
}
|
| 176 |
+
except Exception as e:
|
| 177 |
+
error_msg = f"Error in profanity detection: {str(e)}"
|
| 178 |
+
logger.error(error_msg)
|
| 179 |
+
return {"error": error_msg, "text": text, "score": 0, "profanity": False}
|
| 180 |
+
|
| 181 |
+
def create_highlighted_text(text, profane_words):
|
| 182 |
+
"""
|
| 183 |
+
Create HTML-formatted text with profane words highlighted
|
| 184 |
+
"""
|
| 185 |
+
if not profane_words:
|
| 186 |
+
return escape(text)
|
| 187 |
+
|
| 188 |
+
# Create a regex pattern matching any of the profane words (case insensitive)
|
| 189 |
+
pattern = r'\b(' + '|'.join(re.escape(word) for word in profane_words) + r')\b'
|
| 190 |
+
|
| 191 |
+
# Replace occurrences with highlighted versions
|
| 192 |
+
def highlight_match(match):
|
| 193 |
+
return f'<span style="background-color: rgba(255, 0, 0, 0.3); padding: 0px 2px; border-radius: 3px;">{match.group(0)}</span>'
|
| 194 |
+
|
| 195 |
+
highlighted = re.sub(pattern, highlight_match, text, flags=re.IGNORECASE)
|
| 196 |
+
return highlighted
|
| 197 |
+
|
| 198 |
+
def rephrase_profanity(text):
|
| 199 |
+
"""
|
| 200 |
+
Rephrase text containing profanity
|
| 201 |
+
"""
|
| 202 |
+
if not models_loaded:
|
| 203 |
+
return "Models not loaded yet. Please wait."
|
| 204 |
+
|
| 205 |
+
try:
|
| 206 |
+
# Rephrase using the detoxification model
|
| 207 |
+
inputs = t5_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 208 |
+
if torch.cuda.is_available():
|
| 209 |
+
inputs = inputs.to(device)
|
| 210 |
+
|
| 211 |
+
# Use more conservative generation settings with error handling
|
| 212 |
+
try:
|
| 213 |
+
outputs = t5_model.generate(
|
| 214 |
+
**inputs,
|
| 215 |
+
max_length=512,
|
| 216 |
+
num_beams=4, # Reduced from 5 to be more memory-efficient
|
| 217 |
+
early_stopping=True,
|
| 218 |
+
no_repeat_ngram_size=2,
|
| 219 |
+
length_penalty=1.0
|
| 220 |
+
)
|
| 221 |
+
rephrased_text = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 222 |
+
|
| 223 |
+
# Verify the output is reasonable
|
| 224 |
+
if not rephrased_text or len(rephrased_text) < 3:
|
| 225 |
+
logger.warning(f"T5 model produced unusable output: '{rephrased_text}'")
|
| 226 |
+
return text # Return original if output is too short
|
| 227 |
+
|
| 228 |
+
return rephrased_text.strip()
|
| 229 |
+
|
| 230 |
+
except RuntimeError as e:
|
| 231 |
+
# Handle potential CUDA out of memory error
|
| 232 |
+
if "CUDA out of memory" in str(e):
|
| 233 |
+
logger.warning("CUDA out of memory in T5 model. Trying with smaller beam size...")
|
| 234 |
+
# Try again with smaller beam size
|
| 235 |
+
outputs = t5_model.generate(
|
| 236 |
+
**inputs,
|
| 237 |
+
max_length=512,
|
| 238 |
+
num_beams=2, # Use smaller beam size
|
| 239 |
+
early_stopping=True
|
| 240 |
+
)
|
| 241 |
+
rephrased_text = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 242 |
+
return rephrased_text.strip()
|
| 243 |
+
else:
|
| 244 |
+
raise e # Re-raise if it's not a memory issue
|
| 245 |
+
|
| 246 |
+
except Exception as e:
|
| 247 |
+
error_msg = f"Error in rephrasing: {str(e)}"
|
| 248 |
+
logger.error(error_msg)
|
| 249 |
+
return text # Return original text if rephrasing fails
|
| 250 |
+
|
| 251 |
+
def text_to_speech(text):
|
| 252 |
+
"""
|
| 253 |
+
Convert text to speech using SpeechT5
|
| 254 |
+
"""
|
| 255 |
+
if not models_loaded:
|
| 256 |
+
return None
|
| 257 |
+
|
| 258 |
+
try:
|
| 259 |
+
# Create a temporary file path to save the audio
|
| 260 |
+
temp_file = f"temp_tts_output_{int(time.time())}.wav"
|
| 261 |
+
|
| 262 |
+
# Process the text input
|
| 263 |
+
inputs = tts_processor(text=text, return_tensors="pt")
|
| 264 |
+
if torch.cuda.is_available():
|
| 265 |
+
inputs = inputs.to(device)
|
| 266 |
+
|
| 267 |
+
# Generate speech with a fixed speaker embedding
|
| 268 |
+
speech = tts_model.generate_speech(
|
| 269 |
+
inputs["input_ids"],
|
| 270 |
+
speaker_embeddings,
|
| 271 |
+
vocoder=vocoder
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# Convert from PyTorch tensor to NumPy array
|
| 275 |
+
speech_np = speech.cpu().numpy()
|
| 276 |
+
|
| 277 |
+
# Save as WAV file (sampling rate is 16kHz for SpeechT5)
|
| 278 |
+
write_wav(temp_file, 16000, speech_np)
|
| 279 |
+
|
| 280 |
+
return temp_file
|
| 281 |
+
except Exception as e:
|
| 282 |
+
error_msg = f"Error in text-to-speech conversion: {str(e)}"
|
| 283 |
+
logger.error(error_msg)
|
| 284 |
+
return None
|
| 285 |
+
|
| 286 |
+
def text_analysis(input_text, threshold=0.5):
|
| 287 |
+
"""
|
| 288 |
+
Analyze text for profanity with adjustable threshold
|
| 289 |
+
"""
|
| 290 |
+
if not models_loaded:
|
| 291 |
+
return "Models not loaded yet. Please wait for initialization to complete.", None, None
|
| 292 |
+
|
| 293 |
+
try:
|
| 294 |
+
# Detect profanity with the given threshold
|
| 295 |
+
result = detect_profanity(input_text, threshold=threshold)
|
| 296 |
+
|
| 297 |
+
# Handle error case
|
| 298 |
+
if "error" in result:
|
| 299 |
+
return result["error"], None, None
|
| 300 |
+
|
| 301 |
+
# Process results
|
| 302 |
+
if result["profanity"]:
|
| 303 |
+
clean_text = rephrase_profanity(input_text)
|
| 304 |
+
profane_words_str = ", ".join(result["profane_words"])
|
| 305 |
+
|
| 306 |
+
toxicity_score = result["score"]
|
| 307 |
+
|
| 308 |
+
classification = (
|
| 309 |
+
"Severe Toxicity" if toxicity_score >= 0.7 else
|
| 310 |
+
"Moderate Toxicity" if toxicity_score >= 0.5 else
|
| 311 |
+
"Mild Toxicity" if toxicity_score >= 0.35 else
|
| 312 |
+
"Minimal Toxicity" if toxicity_score >= 0.2 else
|
| 313 |
+
"No Toxicity"
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
# Generate audio for the rephrased text
|
| 317 |
+
audio_output = text_to_speech(clean_text)
|
| 318 |
+
|
| 319 |
+
return (
|
| 320 |
+
f"Profanity Score: {result['score']:.4f}\n\n"
|
| 321 |
+
f"Profane: {result['profanity']}\n"
|
| 322 |
+
f"Classification: {classification}\n"
|
| 323 |
+
f"Detected Profane Words: {profane_words_str}\n\n"
|
| 324 |
+
f"Reworded: {clean_text}"
|
| 325 |
+
), result["highlighted_text"], audio_output
|
| 326 |
+
else:
|
| 327 |
+
# If no profanity detected, just convert the original text to speech
|
| 328 |
+
audio_output = text_to_speech(input_text)
|
| 329 |
+
|
| 330 |
+
return (
|
| 331 |
+
f"Profanity Score: {result['score']:.4f}\n"
|
| 332 |
+
f"Profane: {result['profanity']}\n"
|
| 333 |
+
f"Classification: No Toxicity"
|
| 334 |
+
), None, audio_output
|
| 335 |
+
except Exception as e:
|
| 336 |
+
error_msg = f"Error in text analysis: {str(e)}\n{traceback.format_exc()}"
|
| 337 |
+
logger.error(error_msg)
|
| 338 |
+
return error_msg, None, None
|
| 339 |
+
|
| 340 |
+
def analyze_audio(audio_path, threshold=0.5):
|
| 341 |
+
"""
|
| 342 |
+
Analyze audio for profanity with adjustable threshold
|
| 343 |
+
"""
|
| 344 |
+
if not models_loaded:
|
| 345 |
+
return "Models not loaded yet. Please wait for initialization to complete.", None, None
|
| 346 |
+
|
| 347 |
+
if not audio_path:
|
| 348 |
+
return "No audio provided.", None, None
|
| 349 |
+
|
| 350 |
+
try:
|
| 351 |
+
# Transcribe audio
|
| 352 |
+
result = whisper_model.transcribe(audio_path, fp16=torch.cuda.is_available())
|
| 353 |
+
text = result["text"]
|
| 354 |
+
|
| 355 |
+
# Detect profanity with user-defined threshold
|
| 356 |
+
analysis = detect_profanity(text, threshold=threshold)
|
| 357 |
+
|
| 358 |
+
# Handle error case
|
| 359 |
+
if "error" in analysis:
|
| 360 |
+
return f"Error during analysis: {analysis['error']}\nTranscription: {text}", None, None
|
| 361 |
+
|
| 362 |
+
if analysis["profanity"]:
|
| 363 |
+
clean_text = rephrase_profanity(text)
|
| 364 |
+
else:
|
| 365 |
+
clean_text = text
|
| 366 |
+
|
| 367 |
+
# Generate audio for the rephrased text
|
| 368 |
+
audio_output = text_to_speech(clean_text)
|
| 369 |
+
|
| 370 |
+
return (
|
| 371 |
+
f"Transcription: {text}\n\n"
|
| 372 |
+
f"Profanity Score: {analysis['score']:.4f}\n"
|
| 373 |
+
f"Profane: {'Yes' if analysis['profanity'] else 'No'}\n"
|
| 374 |
+
f"Classification: {'Severe Toxicity' if analysis['score'] >= 0.7 else 'Moderate Toxicity' if analysis['score'] >= 0.5 else 'Mild Toxicity' if analysis['score'] >= 0.35 else 'Minimal Toxicity' if analysis['score'] >= 0.2 else 'No Toxicity'}\n"
|
| 375 |
+
f"Profane Words: {', '.join(analysis['profane_words']) if analysis['profanity'] else 'None'}\n\n"
|
| 376 |
+
f"Reworded: {clean_text}"
|
| 377 |
+
), analysis["highlighted_text"] if analysis["profanity"] else None, audio_output
|
| 378 |
+
except Exception as e:
|
| 379 |
+
error_msg = f"Error in audio analysis: {str(e)}\n{traceback.format_exc()}"
|
| 380 |
+
logger.error(error_msg)
|
| 381 |
+
return error_msg, None, None
|
| 382 |
+
|
| 383 |
+
# Global variables to store streaming results
|
| 384 |
+
stream_results = {
|
| 385 |
+
"transcript": "",
|
| 386 |
+
"profanity_info": "",
|
| 387 |
+
"clean_text": "",
|
| 388 |
+
"audio_output": None
|
| 389 |
+
}
|
| 390 |
+
|
| 391 |
+
def process_stream_chunk(audio_chunk):
|
| 392 |
+
"""Process an audio chunk from the streaming interface"""
|
| 393 |
+
global stream_results, processing_active
|
| 394 |
+
|
| 395 |
+
if not processing_active or not models_loaded:
|
| 396 |
+
return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"]
|
| 397 |
+
|
| 398 |
+
try:
|
| 399 |
+
# The format of audio_chunk from Gradio streaming can vary
|
| 400 |
+
# It can be: (numpy_array, sample_rate), (filepath, sample_rate, numpy_array) or just numpy_array
|
| 401 |
+
# Let's handle all possible cases
|
| 402 |
+
|
| 403 |
+
if audio_chunk is None:
|
| 404 |
+
# No audio received
|
| 405 |
+
return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"]
|
| 406 |
+
|
| 407 |
+
# Different Gradio versions return different formats
|
| 408 |
+
temp_file = None
|
| 409 |
+
|
| 410 |
+
if isinstance(audio_chunk, tuple):
|
| 411 |
+
if len(audio_chunk) == 2:
|
| 412 |
+
# Format: (numpy_array, sample_rate)
|
| 413 |
+
samples, sample_rate = audio_chunk
|
| 414 |
+
temp_file = f"temp_stream_{int(time.time())}.wav"
|
| 415 |
+
write_wav(temp_file, sample_rate, samples)
|
| 416 |
+
elif len(audio_chunk) == 3:
|
| 417 |
+
# Format: (filepath, sample_rate, numpy_array)
|
| 418 |
+
filepath, sample_rate, samples = audio_chunk
|
| 419 |
+
# Use the provided filepath if it exists
|
| 420 |
+
if os.path.exists(filepath):
|
| 421 |
+
temp_file = filepath
|
| 422 |
+
else:
|
| 423 |
+
# Create our own file
|
| 424 |
+
temp_file = f"temp_stream_{int(time.time())}.wav"
|
| 425 |
+
write_wav(temp_file, sample_rate, samples)
|
| 426 |
+
elif isinstance(audio_chunk, np.ndarray):
|
| 427 |
+
# Just a numpy array, assume sample rate of 16000 for Whisper
|
| 428 |
+
samples = audio_chunk
|
| 429 |
+
sample_rate = 16000
|
| 430 |
+
temp_file = f"temp_stream_{int(time.time())}.wav"
|
| 431 |
+
write_wav(temp_file, sample_rate, samples)
|
| 432 |
+
elif isinstance(audio_chunk, str) and os.path.exists(audio_chunk):
|
| 433 |
+
# It's a filepath
|
| 434 |
+
temp_file = audio_chunk
|
| 435 |
+
else:
|
| 436 |
+
# Unknown format
|
| 437 |
+
stream_results["profanity_info"] = f"Error: Unknown audio format: {type(audio_chunk)}"
|
| 438 |
+
return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"]
|
| 439 |
+
|
| 440 |
+
# Make sure we have a valid file to process
|
| 441 |
+
if not temp_file or not os.path.exists(temp_file):
|
| 442 |
+
stream_results["profanity_info"] = "Error: Failed to create audio file for processing"
|
| 443 |
+
return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"]
|
| 444 |
+
|
| 445 |
+
# Process with Whisper
|
| 446 |
+
result = whisper_model.transcribe(temp_file, fp16=torch.cuda.is_available())
|
| 447 |
+
transcript = result["text"].strip()
|
| 448 |
+
|
| 449 |
+
# Skip processing if transcript is empty
|
| 450 |
+
if not transcript:
|
| 451 |
+
# Clean up temp file if we created it
|
| 452 |
+
if temp_file and temp_file.startswith("temp_stream_") and os.path.exists(temp_file):
|
| 453 |
+
try:
|
| 454 |
+
os.remove(temp_file)
|
| 455 |
+
except:
|
| 456 |
+
pass
|
| 457 |
+
# Return current state, but update profanity info
|
| 458 |
+
stream_results["profanity_info"] = "No speech detected. Keep talking..."
|
| 459 |
+
return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"]
|
| 460 |
+
|
| 461 |
+
# Update transcript
|
| 462 |
+
stream_results["transcript"] = transcript
|
| 463 |
+
|
| 464 |
+
# Analyze for profanity
|
| 465 |
+
analysis = detect_profanity(transcript, threshold=0.5)
|
| 466 |
+
|
| 467 |
+
# Check if profanity was detected
|
| 468 |
+
if analysis.get("profanity", False):
|
| 469 |
+
profane_words = ", ".join(analysis.get("profane_words", []))
|
| 470 |
+
stream_results["profanity_info"] = f"Profanity Detected (Score: {analysis['score']:.2f})\nProfane Words: {profane_words}"
|
| 471 |
+
|
| 472 |
+
# Rephrase to clean text
|
| 473 |
+
clean_text = rephrase_profanity(transcript)
|
| 474 |
+
stream_results["clean_text"] = clean_text
|
| 475 |
+
|
| 476 |
+
# Create audio from cleaned text
|
| 477 |
+
audio_file = text_to_speech(clean_text)
|
| 478 |
+
if audio_file:
|
| 479 |
+
stream_results["audio_output"] = audio_file
|
| 480 |
+
else:
|
| 481 |
+
stream_results["profanity_info"] = f"No Profanity Detected (Score: {analysis['score']:.2f})"
|
| 482 |
+
stream_results["clean_text"] = transcript
|
| 483 |
+
|
| 484 |
+
# Use original text for audio if no profanity
|
| 485 |
+
audio_file = text_to_speech(transcript)
|
| 486 |
+
if audio_file:
|
| 487 |
+
stream_results["audio_output"] = audio_file
|
| 488 |
+
|
| 489 |
+
# Clean up temporary file if we created it
|
| 490 |
+
if temp_file and temp_file.startswith("temp_stream_") and os.path.exists(temp_file):
|
| 491 |
+
try:
|
| 492 |
+
os.remove(temp_file)
|
| 493 |
+
except:
|
| 494 |
+
pass
|
| 495 |
+
|
| 496 |
+
return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"]
|
| 497 |
+
|
| 498 |
+
except Exception as e:
|
| 499 |
+
error_msg = f"Error processing streaming audio: {str(e)}\n{traceback.format_exc()}"
|
| 500 |
+
logger.error(error_msg)
|
| 501 |
+
|
| 502 |
+
# Update profanity info with error message
|
| 503 |
+
stream_results["profanity_info"] = f"Error: {str(e)}"
|
| 504 |
+
|
| 505 |
+
return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"]
|
| 506 |
+
|
| 507 |
+
def start_streaming():
|
| 508 |
+
"""Start the real-time audio processing"""
|
| 509 |
+
global processing_active, stream_results
|
| 510 |
+
|
| 511 |
+
if not models_loaded:
|
| 512 |
+
return "Models not loaded yet. Please wait for initialization to complete."
|
| 513 |
+
|
| 514 |
+
if processing_active:
|
| 515 |
+
return "Streaming is already active."
|
| 516 |
+
|
| 517 |
+
# Reset results
|
| 518 |
+
stream_results = {
|
| 519 |
+
"transcript": "",
|
| 520 |
+
"profanity_info": "Waiting for audio input...",
|
| 521 |
+
"clean_text": "",
|
| 522 |
+
"audio_output": None
|
| 523 |
+
}
|
| 524 |
+
|
| 525 |
+
processing_active = True
|
| 526 |
+
logger.info("Started real-time audio processing")
|
| 527 |
+
return "Started real-time audio processing. Speak into your microphone."
|
| 528 |
+
|
| 529 |
+
def stop_streaming():
|
| 530 |
+
"""Stop the real-time audio processing"""
|
| 531 |
+
global processing_active
|
| 532 |
+
|
| 533 |
+
if not processing_active:
|
| 534 |
+
return "Streaming is not active."
|
| 535 |
+
|
| 536 |
+
processing_active = False
|
| 537 |
+
return "Stopped real-time audio processing."
|
| 538 |
+
|
| 539 |
+
def create_ui():
|
| 540 |
+
"""Create the Gradio UI"""
|
| 541 |
+
# Simple CSS for styling
|
| 542 |
+
css = """
|
| 543 |
+
/* Fix for dark mode text visibility */
|
| 544 |
+
.dark .gr-input,
|
| 545 |
+
.dark textarea,
|
| 546 |
+
.dark .gr-textbox,
|
| 547 |
+
.dark [data-testid="textbox"] {
|
| 548 |
+
color: white !important;
|
| 549 |
+
background-color: #2c303b !important;
|
| 550 |
+
}
|
| 551 |
+
|
| 552 |
+
.dark .gr-box,
|
| 553 |
+
.dark .gr-form,
|
| 554 |
+
.dark .gr-panel,
|
| 555 |
+
.dark .gr-block {
|
| 556 |
+
color: white !important;
|
| 557 |
+
}
|
| 558 |
+
|
| 559 |
+
/* Highlighted text container - with dark mode fixes */
|
| 560 |
+
.highlighted-text {
|
| 561 |
+
border: 1px solid #ddd;
|
| 562 |
+
border-radius: 5px;
|
| 563 |
+
padding: 10px;
|
| 564 |
+
margin: 10px 0;
|
| 565 |
+
background-color: #f9f9f9;
|
| 566 |
+
font-family: sans-serif;
|
| 567 |
+
max-height: 300px;
|
| 568 |
+
overflow-y: auto;
|
| 569 |
+
color: #333 !important; /* Ensure text is dark for light mode */
|
| 570 |
+
}
|
| 571 |
+
|
| 572 |
+
/* Dark mode specific styling for highlighted text */
|
| 573 |
+
.dark .highlighted-text {
|
| 574 |
+
background-color: #2c303b !important;
|
| 575 |
+
color: #ffffff !important;
|
| 576 |
+
border-color: #4a4f5a !important;
|
| 577 |
+
}
|
| 578 |
+
|
| 579 |
+
/* Make sure text in the highlighted container remains visible in both themes */
|
| 580 |
+
.highlighted-text, .dark .highlighted-text {
|
| 581 |
+
color-scheme: light dark;
|
| 582 |
+
}
|
| 583 |
+
|
| 584 |
+
/* Loading animation */
|
| 585 |
+
.loading {
|
| 586 |
+
display: inline-block;
|
| 587 |
+
width: 20px;
|
| 588 |
+
height: 20px;
|
| 589 |
+
border: 3px solid rgba(0,0,0,.3);
|
| 590 |
+
border-radius: 50%;
|
| 591 |
+
border-top-color: #3498db;
|
| 592 |
+
animation: spin 1s ease-in-out infinite;
|
| 593 |
+
}
|
| 594 |
+
|
| 595 |
+
@keyframes spin {
|
| 596 |
+
to { transform: rotate(360deg); }
|
| 597 |
+
}
|
| 598 |
+
"""
|
| 599 |
+
|
| 600 |
+
# Create a custom theme based on Soft but explicitly set to light mode
|
| 601 |
+
light_theme = gr.themes.Soft(
|
| 602 |
+
primary_hue="blue",
|
| 603 |
+
secondary_hue="blue",
|
| 604 |
+
neutral_hue="gray"
|
| 605 |
+
)
|
| 606 |
+
|
| 607 |
+
# Set theme to light mode and disable theme switching
|
| 608 |
+
with gr.Blocks(css=css, theme=light_theme, analytics_enabled=False) as ui:
|
| 609 |
+
# Model initialization
|
| 610 |
+
init_status = gr.State("")
|
| 611 |
+
|
| 612 |
+
gr.Markdown(
|
| 613 |
+
"""
|
| 614 |
+
# Profanity Detection & Replacement System
|
| 615 |
+
Detect, rephrase, and listen to cleaned content from text or audio!
|
| 616 |
+
""",
|
| 617 |
+
elem_classes="header"
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
# The rest of your UI code remains unchanged...
|
| 621 |
+
# Initialize models button with status indicators
|
| 622 |
+
with gr.Row():
|
| 623 |
+
with gr.Column(scale=3):
|
| 624 |
+
init_button = gr.Button("Initialize Models", variant="primary")
|
| 625 |
+
init_output = gr.Textbox(label="Initialization Status", interactive=False)
|
| 626 |
+
with gr.Column(scale=1):
|
| 627 |
+
model_status = gr.HTML(
|
| 628 |
+
"""<div style="text-align: center; padding: 5px;">
|
| 629 |
+
<p><b>Model Status:</b> <span style="color: #e74c3c;">Not Loaded</span></p>
|
| 630 |
+
</div>"""
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
# Global sensitivity slider
|
| 634 |
+
sensitivity = gr.Slider(
|
| 635 |
+
minimum=0.2,
|
| 636 |
+
maximum=0.95,
|
| 637 |
+
value=0.5,
|
| 638 |
+
step=0.05,
|
| 639 |
+
label="Profanity Detection Sensitivity",
|
| 640 |
+
info="Lower values are more permissive, higher values are more strict"
|
| 641 |
+
)
|
| 642 |
+
|
| 643 |
+
with gr.Row():
|
| 644 |
+
with gr.Column(scale=3):
|
| 645 |
+
gr.Markdown("### Choose an Input Method")
|
| 646 |
+
|
| 647 |
+
# Text Analysis
|
| 648 |
+
with gr.Tabs():
|
| 649 |
+
with gr.TabItem("Text Analysis", elem_id="text-tab"):
|
| 650 |
+
with gr.Row():
|
| 651 |
+
text_input = gr.Textbox(
|
| 652 |
+
label="Enter Text",
|
| 653 |
+
placeholder="Type your text here...",
|
| 654 |
+
lines=5,
|
| 655 |
+
elem_classes="textbox"
|
| 656 |
+
)
|
| 657 |
+
with gr.Row():
|
| 658 |
+
text_button = gr.Button("Analyze Text", variant="primary")
|
| 659 |
+
clear_button = gr.Button("Clear", variant="secondary")
|
| 660 |
+
|
| 661 |
+
with gr.Row():
|
| 662 |
+
with gr.Column(scale=2):
|
| 663 |
+
text_output = gr.Textbox(label="Results", lines=10)
|
| 664 |
+
highlighted_output = gr.HTML(label="Detected Profanity", elem_classes="highlighted-text")
|
| 665 |
+
with gr.Column(scale=1):
|
| 666 |
+
text_audio_output = gr.Audio(label="Rephrased Audio", type="filepath")
|
| 667 |
+
|
| 668 |
+
# Audio Analysis
|
| 669 |
+
with gr.TabItem("Audio Analysis", elem_id="audio-tab"):
|
| 670 |
+
gr.Markdown("### Upload or Record Audio")
|
| 671 |
+
audio_input = gr.Audio(
|
| 672 |
+
label="Audio Input",
|
| 673 |
+
type="filepath",
|
| 674 |
+
sources=["microphone", "upload"]
|
| 675 |
+
#waveform_options=gr.WaveformOptions(waveform_color="#4a90e2")
|
| 676 |
+
)
|
| 677 |
+
with gr.Row():
|
| 678 |
+
audio_button = gr.Button("Analyze Audio", variant="primary")
|
| 679 |
+
clear_audio_button = gr.Button("Clear", variant="secondary")
|
| 680 |
+
|
| 681 |
+
with gr.Row():
|
| 682 |
+
with gr.Column(scale=2):
|
| 683 |
+
audio_output = gr.Textbox(label="Results", lines=10, show_copy_button=True)
|
| 684 |
+
audio_highlighted_output = gr.HTML(label="Detected Profanity", elem_classes="highlighted-text")
|
| 685 |
+
with gr.Column(scale=1):
|
| 686 |
+
clean_audio_output = gr.Audio(label="Rephrased Audio", type="filepath")
|
| 687 |
+
|
| 688 |
+
# Real-time Streaming
|
| 689 |
+
with gr.TabItem("Real-time Streaming", elem_id="streaming-tab"):
|
| 690 |
+
gr.Markdown("### Real-time Audio Processing")
|
| 691 |
+
gr.Markdown("Enable real-time audio processing to filter profanity as you speak.")
|
| 692 |
+
|
| 693 |
+
with gr.Row():
|
| 694 |
+
with gr.Column(scale=1):
|
| 695 |
+
start_stream_button = gr.Button("Start Real-time Processing", variant="primary")
|
| 696 |
+
stop_stream_button = gr.Button("Stop Real-time Processing", variant="secondary")
|
| 697 |
+
stream_status = gr.Textbox(label="Streaming Status", value="Inactive", interactive=False)
|
| 698 |
+
|
| 699 |
+
# Add microphone input specifically for streaming
|
| 700 |
+
stream_audio_input = gr.Audio(
|
| 701 |
+
label="Streaming Microphone Input",
|
| 702 |
+
type="filepath",
|
| 703 |
+
sources=["microphone"],
|
| 704 |
+
streaming=True
|
| 705 |
+
#waveform_options=gr.WaveformOptions(waveform_color="#4a90e2")
|
| 706 |
+
)
|
| 707 |
+
|
| 708 |
+
with gr.Column(scale=2):
|
| 709 |
+
# Add elements to display streaming results
|
| 710 |
+
stream_transcript = gr.Textbox(label="Live Transcription", lines=2)
|
| 711 |
+
stream_profanity_info = gr.Textbox(label="Profanity Detection", lines=2)
|
| 712 |
+
stream_clean_text = gr.Textbox(label="Clean Text", lines=2)
|
| 713 |
+
# Element to play the clean audio
|
| 714 |
+
stream_audio_output = gr.Audio(label="Clean Audio Output", type="filepath")
|
| 715 |
+
|
| 716 |
+
gr.Markdown("""
|
| 717 |
+
### How Real-time Streaming Works
|
| 718 |
+
1. Click "Start Real-time Processing" to begin
|
| 719 |
+
2. Use the microphone input to speak
|
| 720 |
+
3. The system will process audio in real-time, detect and clean profanity
|
| 721 |
+
4. You'll see the transcription, profanity info, and clean output appear above
|
| 722 |
+
5. Click "Stop Real-time Processing" when finished
|
| 723 |
+
|
| 724 |
+
Note: This feature requires microphone access and may have some latency.
|
| 725 |
+
""")
|
| 726 |
+
|
| 727 |
+
# Event handlers
|
| 728 |
+
def update_model_status(status_text):
|
| 729 |
+
"""Update both the status text and the visual indicator"""
|
| 730 |
+
if "successfully" in status_text.lower():
|
| 731 |
+
status_html = """<div style="text-align: center; padding: 5px;">
|
| 732 |
+
<p><b>Model Status:</b> <span style="color: #2ecc71;">Loaded ✓</span></p>
|
| 733 |
+
</div>"""
|
| 734 |
+
elif "error" in status_text.lower():
|
| 735 |
+
status_html = """<div style="text-align: center; padding: 5px;">
|
| 736 |
+
<p><b>Model Status:</b> <span style="color: #e74c3c;">Error ✗</span></p>
|
| 737 |
+
</div>"""
|
| 738 |
+
else:
|
| 739 |
+
status_html = """<div style="text-align: center; padding: 5px;">
|
| 740 |
+
<p><b>Model Status:</b> <span style="color: #f39c12;">Loading...</span></p>
|
| 741 |
+
</div>"""
|
| 742 |
+
return status_text, status_html
|
| 743 |
+
|
| 744 |
+
init_button.click(
|
| 745 |
+
lambda: update_model_status("Loading models, please wait..."),
|
| 746 |
+
inputs=[],
|
| 747 |
+
outputs=[init_output, model_status]
|
| 748 |
+
).then(
|
| 749 |
+
load_models,
|
| 750 |
+
inputs=[],
|
| 751 |
+
outputs=[init_output]
|
| 752 |
+
).then(
|
| 753 |
+
update_model_status,
|
| 754 |
+
inputs=[init_output],
|
| 755 |
+
outputs=[init_output, model_status]
|
| 756 |
+
)
|
| 757 |
+
|
| 758 |
+
text_button.click(
|
| 759 |
+
text_analysis,
|
| 760 |
+
inputs=[text_input, sensitivity],
|
| 761 |
+
outputs=[text_output, highlighted_output, text_audio_output]
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
clear_button.click(
|
| 765 |
+
lambda: [None, None, None],
|
| 766 |
+
inputs=None,
|
| 767 |
+
outputs=[text_input, highlighted_output, text_audio_output]
|
| 768 |
+
)
|
| 769 |
+
|
| 770 |
+
audio_button.click(
|
| 771 |
+
analyze_audio,
|
| 772 |
+
inputs=[audio_input, sensitivity],
|
| 773 |
+
outputs=[audio_output, audio_highlighted_output, clean_audio_output]
|
| 774 |
+
)
|
| 775 |
+
|
| 776 |
+
clear_audio_button.click(
|
| 777 |
+
lambda: [None, None, None, None],
|
| 778 |
+
inputs=None,
|
| 779 |
+
outputs=[audio_input, audio_output, audio_highlighted_output, clean_audio_output]
|
| 780 |
+
)
|
| 781 |
+
|
| 782 |
+
start_stream_button.click(
|
| 783 |
+
start_streaming,
|
| 784 |
+
inputs=[],
|
| 785 |
+
outputs=[stream_status]
|
| 786 |
+
)
|
| 787 |
+
|
| 788 |
+
stop_stream_button.click(
|
| 789 |
+
stop_streaming,
|
| 790 |
+
inputs=[],
|
| 791 |
+
outputs=[stream_status]
|
| 792 |
+
)
|
| 793 |
+
|
| 794 |
+
# Connect the streaming audio input to our processing function
|
| 795 |
+
# First function to debug the audio chunk format
|
| 796 |
+
def debug_audio_format(audio_chunk):
|
| 797 |
+
"""Debug function to log audio format"""
|
| 798 |
+
format_info = f"Type: {type(audio_chunk)}"
|
| 799 |
+
if isinstance(audio_chunk, tuple):
|
| 800 |
+
format_info += f", Length: {len(audio_chunk)}"
|
| 801 |
+
for i, item in enumerate(audio_chunk):
|
| 802 |
+
format_info += f", Item {i} type: {type(item)}"
|
| 803 |
+
logger.info(f"Audio chunk format: {format_info}")
|
| 804 |
+
return audio_chunk
|
| 805 |
+
|
| 806 |
+
# Use the stream method with preprocessor for debugging
|
| 807 |
+
stream_audio_input.stream(
|
| 808 |
+
fn=process_stream_chunk,
|
| 809 |
+
inputs=[stream_audio_input],
|
| 810 |
+
outputs=[stream_transcript, stream_profanity_info, stream_clean_text, stream_audio_output],
|
| 811 |
+
preprocess=debug_audio_format
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
return ui
|
| 815 |
+
|
| 816 |
+
if __name__ == "__main__":
|
| 817 |
+
# Set environment variable to avoid OpenMP conflicts
|
| 818 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
| 819 |
+
|
| 820 |
+
# Create and launch the UI
|
| 821 |
+
ui = create_ui()
|
| 822 |
+
ui.launch(server_name="0.0.0.0", share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
numpy
|
| 3 |
+
openai_whisper
|
| 4 |
+
pandas
|
| 5 |
+
scipy
|
| 6 |
+
torch
|
| 7 |
+
transformers
|
| 8 |
+
pillow
|
| 9 |
+
sentencepiece
|
test_text.md
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Understood. For research/educational purposes and model testing, here’s an uncensored, explicit version of the script with raw profanity and edge cases.
|
| 2 |
+
|
| 3 |
+
Uncensored Profanity Testing Script
|
| 4 |
+
Context: High-pressure workplace (Wolf of Wall Street-inspired)
|
| 5 |
+
Jordan (sales trainer):
|
| 6 |
+
"Listen up, you spineless maggots! If you can’t close a deal without crying like a goddamn toddler, get the hell out of my office! This isn’t a fucking charity! You think clients care about your excuses? Bullshit! Sell or get screwed!"
|
| 7 |
+
|
| 8 |
+
Context: Family confrontation (Sopranos-inspired)
|
| 9 |
+
Tony (angry parent):
|
| 10 |
+
"You lied to me? You’re gonna sit there with that shit-eating grin and act innocent? I oughta smack that damn phone outta your hand! You’re lucky I don’t fucking lose it right now!"
|
| 11 |
+
|
| 12 |
+
Context: Crime/heist scene (Pulp Fiction-inspired)
|
| 13 |
+
Vincent (panicking):
|
| 14 |
+
"Move your ass! We’ve got cops in 3 minutes! Why’d you leave the goddamn keys in the ignition, you dumb shit?!"
|
| 15 |
+
|
| 16 |
+
Context: Sarcastic humor (The Big Lebowski-inspired)
|
| 17 |
+
The Dude (relaxed):
|
| 18 |
+
"Nice rug, man. Really ties the room together… though your attitude’s about as useful as a fucking screen door on a submarine."
|
| 19 |
+
|
| 20 |
+
Context: Toxic online gaming chat
|
| 21 |
+
Player 1:
|
| 22 |
+
"Stop camping, you noob! Go touch grass, you motherfucker! This is why your ass got carried in ranked!"
|
| 23 |
+
|
| 24 |
+
Edge Cases & Ambiguities
|
| 25 |
+
False Positives:
|
| 26 |
+
|
| 27 |
+
"I’m tired of this bull session." (vs. "bullshit")
|
| 28 |
+
|
| 29 |
+
"He’s such a prickly cactus." (vs. "prick")
|
| 30 |
+
|
| 31 |
+
Creative Spelling:
|
| 32 |
+
|
| 33 |
+
"Sh1t, fck, @ss, d!ck"* (leetspeak/symbol evasion)
|
| 34 |
+
|
| 35 |
+
"fukken hell, biatch" (phonetic slang)
|
| 36 |
+
|
| 37 |
+
Reclaimed/Contextual Terms:
|
| 38 |
+
|
| 39 |
+
"That queer filmmaker revolutionized the genre." (non-slur usage)
|
| 40 |
+
|
| 41 |
+
"She’s a bad bitch CEO." (empowerment vs. insult)
|
| 42 |
+
|
| 43 |
+
Ethical Reminder
|
| 44 |
+
Use anonymized datasets.
|
| 45 |
+
|
| 46 |
+
Flag cultural/regional variance (e.g., "bloody wanker" vs. "goddamn idiot").
|
| 47 |
+
|
| 48 |
+
Avoid amplifying harm by limiting real-world deployment of raw data.
|
| 49 |
+
|
| 50 |
+
Let me know if you need additional explicit examples (e.g., sexual terms, extreme aggression) or specific dialect tests.
|