Spaces:
Runtime error
Runtime error
File size: 1,233 Bytes
30f5735 c1d8fa7 6d77d30 c1d8fa7 30f5735 37ce7af 12b00d2 30f5735 37ce7af 30f5735 6d77d30 217b9d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
from transformers import ViltProcessor, ViltForVisualQuestionAnswering
import torch
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
torch.hub.download_url_to_file('https://computing.ece.vt.edu/~harsh/visualAttention/ProjectWebpage/Figures/vqa_1.png', 'banana.png')
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
model = ViltForVisualQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
def answer_question(image, text):
encoding = processor(image, text, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model(**encoding)
logits = outputs.logits
idx = logits.argmax(-1).item()
predicted_answer = model.config.id2label[idx]
return predicted_answer
image = gr.inputs.Image(type="pil")
question = gr.inputs.Textbox(label="Question")
answer = gr.outputs.Textbox(label="Predicted answer")
examples = [["cats.jpg", "How many cats are there?"], ["banana.png", "What is the mustache made of?"]]
interface = gr.Interface(fn=answer_question, inputs=[image, question], outputs=answer, examples=examples, enable_queue=True)
interface.launch(debug=True) |